內(nèi)含中空纖維型復(fù)合材料自修復(fù)效率及力學(xué)性能
[Abstract]:Fiber reinforced composites are more and more used in aerospace, automobile and other fields because of their high specific strength and specific stiffness. However, most of its basic structural forms are laminate structure, and there are some problems in the process of lamination, such as the lack of reinforced fiber and so on. When the laminate is subjected to external load, the interlaminar cracking occurs easily, so as to reduce the overall stiffness and strength of the structure, and even damage the laminated plate, so that its application is limited. Therefore, it is very important to repair the crack and damage site by self-repairing method, so as to prolong the service life of the material. The hollow glass tube with the outer diameter 桅 0.9mm was placed in the interior of the carbon fiber epoxy resin matrix composite laminate. The epoxy resin was selected as the repairing agent. After curing, the standard specimen was cut into three-point bending. Some specimens were subjected to quasi-static indentation test, then self-repair was carried out by thermal excitation, and three-point bending test was carried out on all specimens after repair. The experimental results show that (1) the transverse placement of hollow glass tubes in laminates will not reduce the mechanical properties of the laminate itself; (2) in quasi-static indentation experiment, the damage degree will increase with the increase of loading load. When the load of quasi-static indentation experiment is 1 700 N, the bending resistance of the specimen decreases by 37%. The hollow glass pipe in the laminate is destroyed by quasi-static indentation experiment. The repairing agent in the pipe can quickly flow to the damaged part of the laminate, repair the crack, glue the crack, and play the purpose of repairing. The maximum flexural strength of the damaged specimen can be recovered to 109% of the original strength. Referring to the placement mode of "z-pin" in composite laminate, the hollow glass pipe with the outer diameter 桅 0.9mm was implanted into the prepreg material along the thickness direction, and ENB was used as the repairing agent to construct the self-repairing system. After the prepreg laminate is solidified, it is machined into double cantilever beam and three-point bending specimen. Through the comparative analysis of pressure failure test, three-point bending test and double cantilever beam experiment, it is known that 1 in the pressure failure experiment, the bending resistance of the specimen is reduced by 11.91% maximum by the pressure of 8KN; The repair system composed of 2ENB and Grubbs catalysts can repair any layer crack in the laminate, and the bending strength of the damaged specimen can be restored to 96.63% of the original strength. 3 in the experiment of double cantilever beam, the vertical hollow glass tube can toughen the laminate, and the toughening effect increases with the increase of the distribution density of the hollow glass tube, and the maximum fracture load value increases by 33.26%. The quasi-static indentation experiment and three-point bending experiment were carried out by using epoxy resin as repairing agent and referring to the placement mode of "z-pin" in composite laminate, using the above-mentioned experimental methods and experimental process to carry out the quasi-static indentation experiment and three-point bending experiment. The experimental results show that 1the vertical placement of hollow glass tube in laminates can improve the bending resistance of laminated plates, and the bending resistance of specimens is increased by 32.24% under the same working condition; 2 in quasi-static indentation experiment, the damage degree increases with the increase of loading load. When the load of quasi-static indentation experiment is 5KN, the bending resistance of the three types of specimens decreases by 57.83%. The epoxy resin repair system in the laminate can repair any layer crack in the laminate, and the repair efficiency increases with the increase of the distribution density of the hollow glass tube, and the repair efficiency increases with the increase of the distribution density of the hollow glass tube. The maximum flexural strength of the damaged specimen can be recovered to 66.85% of the original strength.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何陵輝;層合板應(yīng)力的一種簡單計算方法[J];復(fù)合材料學(xué)報;1994年03期
2 譚惠豐,于增信,杜星文;層合板六參量幾何非線性高階剪切理論[J];固體力學(xué)學(xué)報;2000年01期
3 崔建國,傅永輝,李年,孫軍,何家文;金屬/金屬層合板疲勞性能研究[J];金屬學(xué)報;2000年03期
4 陳曉,許可,戴詩亮;層合板分叉方程的Lyapunov-Schmidt約化分析[J];固體力學(xué)學(xué)報;2001年03期
5 朱海堂,張獻(xiàn)瑞,諶續(xù)國;用P型有限元分析層合板的應(yīng)力[J];鄭州工業(yè)大學(xué)學(xué)報;2001年04期
6 崔海濤,溫衛(wèi)東,郝勇;碳纖維增強復(fù)合材料含孔層合板損傷破壞分析研究進(jìn)展[J];材料導(dǎo)報;2002年02期
7 Ali Al-Mansour,程小全,寇長河;單面貼補修理后層合板的拉伸性能[J];復(fù)合材料學(xué)報;2005年03期
8 張二亮;張衛(wèi)紅;邱克鵬;;基于材料-結(jié)構(gòu)協(xié)同設(shè)計的層合板多級優(yōu)化方法[J];機械科學(xué)與技術(shù);2006年01期
9 章繼峰;張博明;杜善義;;基于健康監(jiān)測的層合板結(jié)構(gòu)載荷重構(gòu)[J];力學(xué)與實踐;2007年04期
10 陳建橋;彭文杰;魏俊紅;顧明凱;;考慮內(nèi)部損傷影響的層合板最終強度預(yù)測[J];固體力學(xué)學(xué)報;2009年01期
相關(guān)會議論文 前10條
1 彭文杰;陳建橋;;層合板自由邊處分層應(yīng)力的優(yōu)化研究[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國科協(xié)年會論文集(一)[C];2007年
2 張培偉;熊峰;王東平;;雙向編織碳纖維層合板的振動破壞[A];中國力學(xué)大會——2013論文摘要集[C];2013年
3 周曄欣;黃爭鳴;;新的極限強度判據(jù)和剛度衰減對橋聯(lián)理論模擬層合板精度的改善[A];復(fù)合材料力學(xué)的現(xiàn)代進(jìn)展與工程應(yīng)用——全國復(fù)合材料力學(xué)研討會論文集[C];2007年
4 佟麗莉;葛源源;;鋪層角度和厚度偏差對層合板熱性能的影響[A];第十五屆全國復(fù)合材料學(xué)術(shù)會議論文集(下冊)[C];2008年
5 邵闖;葛森;陶華;;層合板的聲響應(yīng)分析[A];中國航空結(jié)構(gòu)動力學(xué)專業(yè)組第十六屆學(xué)術(shù)交流會論文集[C];2008年
6 康軍;關(guān)志東;黎增山;丁聰;黃志強;;復(fù)合材料開口層合板拉伸應(yīng)變集中與失效分析[A];第十四屆中國科協(xié)年會第11分會場:低成本、高性能復(fù)合材料發(fā)展論壇論文集[C];2012年
7 卿尚波;晏麓暉;;纖維層合板抗彈性能數(shù)值模擬分析[A];第18屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅲ冊[C];2009年
8 戴相花;高存法;;含橢圓孔磁電彈層合板的彎曲問題研究[A];第16屆全國疲勞與斷裂學(xué)術(shù)會議會議程序冊[C];2012年
9 劉治東;唐頎;龐寶君;;基于等時差波陣面的層合板聲發(fā)射源定位[A];第十五屆全國復(fù)合材料學(xué)術(shù)會議論文集(下冊)[C];2008年
10 徐穎;溫衛(wèi)東;崔海坡;;低速沖擊下的層合板逐漸損傷擴(kuò)展模擬[A];第十六屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會論文集[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 蔡曉江;基于復(fù)合材料各向異性的切削力熱變化規(guī)律和表面質(zhì)量評價試驗研究[D];上海交通大學(xué);2014年
2 張文姣;纖維增強復(fù)合材料的疲勞損傷模型及分析方法[D];哈爾濱工業(yè)大學(xué);2015年
3 宮文然;含分層損傷復(fù)合材料(CFRP)層合板結(jié)構(gòu)屈曲和后屈曲力學(xué)行為研究[D];天津大學(xué);2015年
4 邵雪飛;具界面損傷功能梯度/纖維金屬層合板非線性力學(xué)行為研究[D];湖南大學(xué);2016年
5 阮江濤;含沖擊損傷縫合和未縫合層合板壓縮實驗研究與數(shù)值分析[D];天津大學(xué);2012年
6 彭文杰;復(fù)合材料層合結(jié)構(gòu)極限強度預(yù)測方法及分層應(yīng)力最小化研究[D];華中科技大學(xué);2009年
7 謝昱;層合板的應(yīng)力分析及其剝離[D];清華大學(xué);1988年
8 辛士紅;纖維增強樹脂基復(fù)合材料層合板抗侵徹性能數(shù)值模擬研究[D];中國科學(xué)技術(shù)大學(xué);2015年
9 王丹勇;層合板接頭損傷失效與疲勞壽命研究[D];南京航空航天大學(xué);2006年
10 劉軍;損傷對層合板分層尖端場的影響及層間強韌化分析[D];東北大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 陳磊;正交異性層合板在力載和熱載下靜、動態(tài)響應(yīng)的數(shù)值模擬[D];合肥工業(yè)大學(xué);2012年
2 劉奇;應(yīng)用纖維束復(fù)合材料試驗研究層合板界面性能[D];華南理工大學(xué);2015年
3 張科;層合板結(jié)構(gòu)振動分析的無網(wǎng)格方法[D];蘇州大學(xué);2015年
4 孫筱辰;纖維復(fù)合材料層合板的層間增韌及低速沖擊研究[D];山東大學(xué);2015年
5 姚宇地;含預(yù)置分層層合板的分層擴(kuò)展及其屈曲行為研究[D];哈爾濱工業(yè)大學(xué);2015年
6 莫佳亮;損傷對均質(zhì)和復(fù)合材料阻尼性能影響研究[D];南京航空航天大學(xué);2014年
7 彭文輝;層合板結(jié)構(gòu)的振動和穩(wěn)定性分析及其優(yōu)化設(shè)計[D];南昌航空大學(xué);2015年
8 林志明;層合板結(jié)構(gòu)聲振特性及聲輻射最小化優(yōu)化分析[D];南昌航空大學(xué);2015年
9 陳敬宜;碳纖維層合板面內(nèi)壓縮強度研究[D];太原理工大學(xué);2016年
10 陳熹;壓電/磁電層合板的振動分析[D];中北大學(xué);2016年
,本文編號:2442204
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2442204.html