ZnS-超分子有機凝膠復(fù)合薄膜的制備及其傳感性能
[Abstract]:In the environment detection, the amine compound has a large toxicity, and even has a strong carcinogenic effect, so that the amine compound has great attention in the environment and food safety detection. Therefore, there is an urgent need for a continuous study and development of methods for detecting amine compounds. At present, the conventional methods for determining the amine compounds in the environment include gas chromatography, liquid chromatography, mass spectrometry, electrochemical methods, and the like, wherein the fluorescence method is of great concern due to its high sensitivity, high selectivity, and the application of multi-parameter measurement. In addition, the thin-film sensor can be used repeatedly, is convenient to use, does not pollute the system to be tested, is easy to device and the like, and makes the fluorescent thin-film sensor gradually become a kind of functional film material with great development prospect. different from the fluorescent small molecule, the inorganic semiconductor nano-structure has the characteristics of wide excitation spectrum, narrow emission spectrum, adjustable emission wavelength, stable optical performance and the like, so that the inorganic semiconductor nano-structure has a plurality of unique advantages in the sensing aspect as a sensing element, The super-molecular organic gel, which is formed by weak interaction, provides a new idea for the preparation of a more abundant nano-material, and it is expected that the morphology, the particle size and the size distribution of the inorganic nano-structure can be controlled by changing the structure of the supramolecular aggregate, so as to improve the sensing performance. Based on the above considerations, the inorganic semiconductor nano-material is used as a sensing element, the super-molecular gel is a film-forming substrate, and the stability and the induction of the inorganic deposition reaction are induced by using a small-molecular-weight organic gelling agent, ZnS-supramolecular organic gel hybrid films were prepared by in-situ synthesis and co-mixing respectively. Specifically, the following steps are mainly completed: (1) a super-molecular organic gel film containing Zn (Ac)2 is adopted as a template, and a sufficient amount of H2S gas is slowly introduced into the reaction system under the condition of room temperature to prepare the ZnS-supramolecular composite film. The composite film was characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), ultraviolet-visible light absorption spectrum (UV-vis), fluorescence spectrum (PL) and fluorescence lifetime. The results show that the aggregate structure of the gelling agent directly determines the morphology of the final hybrid film, and the existence of the network structure can effectively prevent the further aggregation of the nanoparticles, and the size and the content of the ZnS particles in the hybrid thin film can be adjusted by changing the starting concentration of the Zn (Ac)2, The sensing experiments show that the film has sensitive and selective sensing on the organic monoamines and the diamine vapors, and the sensing reversibility is good. (2) taking into account the influence of different preparation methods of the nano material on the nano structure, firstly, the ZnS nano-particles are prepared by adopting an oil-water interface method, and the ZnS nano-particles are introduced into the super-molecular gel system through physical mixing, and the ZnS nano-particles are dried at room temperature, and the compound film is obtained after the gelling solvent is volatilized and dried. The results show that the ZnS nanoparticles are the cubic crystal form, the ZnS nanoparticles in the composite film are uniformly dispersed, and the network structure formed by the gelling agent can stably and stably stabilize the ZnS micro-nano particles, and the ZnS nanoparticles exhibit stable light-emitting performance. The results show that the higher the ZnS content in the film, the stronger the fluorescence intensity, the more sensitive to the volatile organic monoamines and the diamine vapor, and good sensing reversibility. (3) Considering the effective regulation of the light-emitting behavior of the inorganic nano-materials by doping the metal ions, the part of the invention is expected to improve the light-emitting performance by doping Mn2 + in the ZnS nano-particles, so as to improve the sensing performance of the amine-like gas. The preparation method comprises the following steps of: firstly, preparing the ZnS: Mn nano-particles with different Mn2 + doping amount by adopting an oil-water interface method, and then introducing the ZnS: Mn nano-particles into the super-molecular gel thin film by physical mixing, and drying at room temperature. The XRD results show that the crystal form of ZnS: Mn-supermolecular organic gel hybrid thin film has no change before and after ZnS doping. The static fluorescence spectra of ZnS: Mn-supermolecular organic gel hybrid thin film with different Mn2 + doping amount show that the emission spectrum of ZnS is gradually redshifted with the increase of Mn2 + doping. and the fluorescence intensity of the hybrid thin film is firstly enhanced and then weakened, and when the doping amount of the Mn2 + is 1.5 percent, the fluorescence intensity of the hybrid thin film is the most; and the sensing performance experiment shows that the maximum quenching efficiency of the hybrid thin film doped with the Mn2 + is reduced with the increase of the Mn2 + doping amount, The response time is shortened and the sensitivity is improved.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.2
【相似文獻】
相關(guān)期刊論文 前10條
1 王麗;石敏;周國慶;左如忠;許育東;蘇海林;伍光;于桂洋;于濤;;2-2型磁電復(fù)合薄膜材料研究現(xiàn)狀[J];金屬功能材料;2010年06期
2 ;復(fù)合薄膜試制小結(jié)[J];塑料;1975年01期
3 胡嘉鵬;耐高壓殺菌的復(fù)合薄膜袋裝食品的生產(chǎn)和標(biāo)準(zhǔn)化[J];食品與發(fā)酵工業(yè);1978年05期
4 李淑蘭;;對843復(fù)合薄膜的剖析[J];防腐與包裝;1986年01期
5 曹庸;;多層交叉復(fù)合薄膜[J];金山油化纖;1987年03期
6 陶宏;;一種新型多層共擠出復(fù)合薄膜[J];金山油化纖;1989年03期
7 石敏;顧倉;許育東;王雷;蘇海林;王云龍;齊三;袁琳;;無鉛多鐵性復(fù)合薄膜材料的研究[J];材料導(dǎo)報;2013年23期
8 龔朝陽;羅學(xué)濤;張穎;程璇;張瑩;;復(fù)合薄膜研究的進展[J];真空;2006年05期
9 陳瑩瑩;張溪文;郭玉;韓高榮;;SiC_xO_y/SnO_2:F/TiO_2復(fù)合薄膜的制備及其性能[J];材料科學(xué)與工程學(xué)報;2008年06期
10 董松濤;喻利花;董師潤;許俊華;;磁控共濺射制備鋯-硅-氮復(fù)合薄膜的顯微組織與性能[J];機械工程材料;2008年09期
相關(guān)會議論文 前10條
1 高學(xué)文;;多層共擠出復(fù)合薄膜晶點解析[A];中國包裝技術(shù)協(xié)會研討推廣會暨塑料包裝委員會第六屆第三次年會論文集[C];2004年
2 密永娟;歐軍飛;楊生榮;王金清;;聚多巴胺基復(fù)合薄膜的制備及其性能研究[A];甘肅省化學(xué)會第二十七屆年會暨第九屆甘肅省中學(xué)化學(xué)教學(xué)經(jīng)驗交流會論文摘要集[C];2011年
3 李曉光;劉愉快;姚一平;;BiFeO3/La5/8Ca3/8MnO3復(fù)合薄膜的巨磁介電效應(yīng)及高低電阻態(tài)轉(zhuǎn)換行為[A];2011中國材料研討會論文摘要集[C];2011年
4 趙巍;賈震;鄂磊;雅菁;劉志鋒;;浸漬提拉法合成鈦酸鉍/二氧化鈦復(fù)合薄膜的研究[A];第十七屆全國高技術(shù)陶瓷學(xué)術(shù)年會摘要集[C];2012年
5 王昊;陳雙俊;張軍;許仲梓;;LDPE/POE/SmBO_3復(fù)合薄膜材料表面蝕刻研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
6 朱軍;楊明成;陳海軍;劉克波;趙惠東;張傳國;;γ—射線輻射對尼龍6復(fù)合薄膜性能的影響[A];第6屆輻射研究與輻射工藝學(xué)術(shù)年會論文集[C];2004年
7 高雅;南策文;;鐵磁性薄膜的制備和磁電復(fù)合薄膜電控磁性能探究[A];2011中國材料研討會論文摘要集[C];2011年
8 趙云峰;高陽;;聚對苯二甲酸乙二醇酯/聚丙烯復(fù)合薄膜的超聲波焊接[A];2010年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(下冊)[C];2010年
9 李廣;殷景華;劉曉旭;馮宇;田付強;雷清泉;;組分對PI/AlN納米復(fù)合薄膜微結(jié)構(gòu)與介電性能影響研究[A];第十三屆全國工程電介質(zhì)學(xué)術(shù)會議論文集[C];2011年
10 朱軍;楊明成;陳海軍;劉克波;趙惠東;;尼龍6復(fù)合薄膜的研制及其輻射改性研究[A];科技、工程與經(jīng)濟社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年
相關(guān)重要報紙文章 前10條
1 陳昌杰;聚乙烯醇在復(fù)合薄膜中的應(yīng)用[N];中國包裝報;2005年
2 張文英;我國多層共擠設(shè)備亟待發(fā)展[N];中國化工報;2003年
3 林其水;常用軟包材的特性和應(yīng)用[N];中國包裝報;2007年
4 趙世亮;復(fù)合薄膜的曲率與材料的熱收縮率差異[N];中國包裝報;2011年
5 高學(xué)文;多層共擠復(fù)合薄膜的應(yīng)用及發(fā)展趨勢[N];中國包裝報;2002年
6 記者 郭新秋、劉文波;多層共擠復(fù)合薄膜在大連誕生[N];中國食品質(zhì)量報;2002年
7 成遠發(fā);復(fù)合薄膜的固化管理[N];中國包裝報;2007年
8 單仁;復(fù)合薄膜基材的品種及性能[N];中國建材報;2006年
9 楊林;新型陶瓷復(fù)合薄膜研制出[N];廣東建設(shè)報;2009年
10 楊;復(fù)合軟包裝基材的特性、應(yīng)用及其開發(fā)[N];中國包裝報;2000年
相關(guān)博士學(xué)位論文 前10條
1 吳戰(zhàn)鵬;具有高反射和高導(dǎo)電特性聚酰亞胺銀復(fù)合薄膜的制備及其形成機理研究[D];北京化工大學(xué);2006年
2 侯亞奇;二氧化鈦及其復(fù)合薄膜光催化降解性能研究[D];清華大學(xué);2004年
3 譚麟;甚低介電常數(shù)聚酰亞胺/多金屬氧酸鹽復(fù)合薄膜的制備及性能[D];華南理工大學(xué);2010年
4 顧勤林;3-氨基丙基—三乙氧基硅烷—稀土復(fù)合薄膜的制備及其摩擦學(xué)性能研究[D];上海交通大學(xué);2008年
5 區(qū)定容;納米復(fù)合薄膜的近場光學(xué)性能[D];清華大學(xué);2004年
6 張以忱;中頻非平衡磁控濺射制備硬質(zhì)復(fù)合薄膜的研究[D];東北大學(xué);2008年
7 陳波;多鐵氧化物復(fù)合薄膜的磁電耦合特性及其調(diào)控[D];南京大學(xué);2014年
8 唐立文;溶膠凝膠法制備銀—鈦酸鉛復(fù)合薄膜及其電學(xué)性能的研究[D];浙江大學(xué);2007年
9 牟書香;聚酰亞胺表面功能化復(fù)合材料的制備及結(jié)構(gòu)與性能研究[D];北京化工大學(xué);2010年
10 蔡琪;新型Ag-ITO復(fù)合薄膜的制備、微結(jié)構(gòu)及光電性質(zhì)表征[D];安徽大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 單文杰;基于界面電荷轉(zhuǎn)移的鉍系復(fù)合薄膜的制備及其光催化性能研究[D];華南理工大學(xué);2015年
2 程波;PIPS法制備多孔C/TiO_2納米復(fù)合薄膜及其太陽能選擇吸收性能研究[D];浙江大學(xué);2015年
3 宋曉棟;NaYF_4:Yb~(3+),Tm~(3+)/Ag復(fù)合薄膜的制備及其上轉(zhuǎn)換發(fā)光性質(zhì)研究[D];遼寧大學(xué);2015年
4 時春華;軟模板法制備中空二氧化硅及其對水性聚氨酯性能的影響[D];陜西科技大學(xué);2015年
5 趙湖鈞;L1_0-FePt/B2-FeRh雙層復(fù)合薄膜的結(jié)構(gòu)和磁性[D];西南大學(xué);2015年
6 司e,
本文編號:2431696
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2431696.html