基于改進(jìn)神經(jīng)網(wǎng)絡(luò)的聲發(fā)射信號識別算法研究
[Abstract]:Acoustic emission (AE) is a kind of nondestructive testing technology which records the internal vibration of material by transient elastic wave. It has the characteristics of real time, applicability and universality, and is suitable for material deformation and pipeline leakage detection. Vessel pressure inspection and other aspects of research. Pattern recognition of acoustic emission signals is an important part of detection. Only by timely and accurate identification of fault modes can we effectively detect faults and avoid material losses and hidden dangers caused by monitoring errors. At present, the acoustic emission recognition technology based on neural network has some disadvantages, such as less feature information content, and the network is prone to fall into local optimum. Based on the existing technology, this paper has carried out research work in the following aspects: first, the acoustic emission detection technology is studied in detail, and the processing method of acoustic emission (Acoustic Emission, AE) signal is discussed. The differences of AE signal waveforms with different rubbing degrees are compared by experiments. Secondly, the feature extraction of acoustic emission signals is studied. It is proposed that Hurst exponent and approximate entropy be added to the AE feature representation, and analyzed from the angle of statistical correlation and uncertainty. The experimental results show that the new AE feature is effective. Thirdly, the structure of neural network algorithm is studied. The advantages of Gao Si hybrid model (Gaussian Mixture Model, GMM) and backpropagation (BP, Back Propagating) are combined to train the model parameters alternately, and the hybrid model GMM/ANN (Artificial Neural Network, is proposed. ANN) is applied to AE recognition to optimize network performance. Fourthly, a forward chaotic neural network algorithm for acoustic emission recognition is proposed. Aiming at the uncertainty and nonlinearity of AE system, the chaotic characteristics of the network are enhanced by Logistic mapping unit, and the recognition performance of the system is improved. Fifthly, an algorithm for acoustic emission recognition using belief network is proposed. Based on the (Restricted Boltzmann Machines, RBM) model of constrained Boltzmann machine, the (Deep Belief Network, DBN), design of belief network is constructed and the parameters of the model are improved to reduce the local optimal effect. The advantages of DBN in AE recognition are proved by comparison with BP.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP183;TB302.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂剛;郝平;盛建榮;;一種改進(jìn)的深度神經(jīng)網(wǎng)絡(luò)在小圖像分類中的應(yīng)用研究[J];計(jì)算機(jī)應(yīng)用與軟件;2014年04期
2 戴禮榮;張仕良;;深度語音信號與信息處理:研究進(jìn)展與展望[J];數(shù)據(jù)采集與處理;2014年02期
3 陳麗萍;王爾玉;戴禮榮;宋彥;;基于深層置信網(wǎng)絡(luò)的說話人信息提取方法[J];模式識別與人工智能;2013年12期
4 陳琦;張文林;牛銅;李弼程;;一種基于RBM的深層神經(jīng)網(wǎng)絡(luò)音素識別方法[J];信息工程大學(xué)學(xué)報;2013年05期
5 李舜酩;郭海東;李殿榮;;振動信號處理方法綜述[J];儀器儀表學(xué)報;2013年08期
6 焦陽;侯潔;李光海;吳占穩(wěn);陳晨;米尚言;;聲發(fā)射信號處理技術(shù)及其在滾動軸承檢測中的應(yīng)用現(xiàn)狀[J];河北科技大學(xué)學(xué)報;2013年04期
7 范會敏;王浩;;模式識別方法概述[J];電子設(shè)計(jì)工程;2012年19期
8 孫志軍;薛磊;許陽明;王正;;深度學(xué)習(xí)研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2012年08期
9 成新民;胡峰;鄧艾東;趙力;;基于代數(shù)網(wǎng)絡(luò)和混沌參數(shù)的碰摩聲發(fā)射源定位方法研究[J];振動工程學(xué)報;2011年03期
10 陳存寶;趙力;;嵌入自聯(lián)想神經(jīng)網(wǎng)絡(luò)的高斯混合背景模型說話人確認(rèn)[J];應(yīng)用科學(xué)學(xué)報;2010年01期
相關(guān)博士學(xué)位論文 前1條
1 劉國華;聲發(fā)射信號處理關(guān)鍵技術(shù)研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前9條
1 陳碩;深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用研究[D];華南理工大學(xué);2013年
2 許可;卷積神經(jīng)網(wǎng)絡(luò)在圖像識別上的應(yīng)用的研究[D];浙江大學(xué);2012年
3 周凌翱;改進(jìn)BP神經(jīng)網(wǎng)絡(luò)在模式識別中的應(yīng)用及研究[D];南京理工大學(xué);2010年
4 劉樂;改進(jìn)BP網(wǎng)絡(luò)及其在預(yù)測問題中的應(yīng)用研究[D];山東師范大學(xué);2009年
5 馮曉光;近似熵在往復(fù)式壓縮機(jī)故障診斷中的研究應(yīng)用[D];大連理工大學(xué);2006年
6 歐陽廣;基于神經(jīng)網(wǎng)絡(luò)BP算法的網(wǎng)絡(luò)入侵檢測系統(tǒng)研究與實(shí)現(xiàn)[D];東南大學(xué);2006年
7 劉志剛;基于現(xiàn)代譜估計(jì)理論的信噪分離方法及其應(yīng)用研究[D];成都理工大學(xué);2006年
8 印欣運(yùn);聲發(fā)射技術(shù)在旋轉(zhuǎn)機(jī)械碰摩故障診斷中的應(yīng)用[D];清華大學(xué);2005年
9 夏宏飛;混合神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[D];浙江大學(xué);2003年
,本文編號:2400160
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2400160.html