表面等離激元共振誘導(dǎo)的金納米結(jié)構(gòu)的三階光學(xué)非線性增強(qiáng)效應(yīng)研究
[Abstract]:The surface plasmon is widely studied due to the local field enhancement and high efficiency coupling energy transmission characteristics. The metal nanostructure based on the surface plasmon characteristics can be applied to the fields of surface enhanced Raman scattering, ultra-sensitive single-molecule detection, biological cancer treatment, and nano-photonic devices. The composite nano-structure of the noble metal has a large third-order optical nonlinearity due to the local field enhancement and the resonance absorption, and the application of the noble metal composite nano-structure in the fields of optical switches, optical information processing, and optoelectronic devices has been the main focus of the research on the plasmon excitation. The super-fast time-response characteristics of the metal nanostructures are also a hot topic in the study of the isotropy. It is an important application in the aspects of photoelectric conversion, photoelectric detection, photochemical reaction, and ultra-fast device. Therefore, it is very important to understand the generation of hot electrons and the physical mechanism of the relaxation process, which can control the generation and relaxation time scale of the hot electrons by controlling the nano-structure parameters and the excitation conditions. The third-order optical nonlinearity of the Au-Ni-Au composite nanorod array, such as the surface plasmon resonance enhancement, the third-order optical nonlinear and ultra-fast time response characteristics of the gold nano-cone, and the third-order optical nonlinearity of the aluminum nano-film structure, are studied in this paper. The construction and the principle of the optical path system are introduced. The main contents include the following aspects: 1. We set up the optical Kerr, the ultra-continuous white light pump detection and the Z-scan optical path, and the theory of each optical path, the measured physical quantity and the physical mechanism in it. The third-order optical nonlinear and super-fast time-response characteristics of the metal nanostructures were studied by using the Z-scan and the optical Kerr optical circuit.. 2. We prepared an Au-Ni-Au composite with a diameter of 18m in an alumina template. the longitudinal or the like of the composite nanorods is approximately 800 from the resonant wavelength, The third-order optical of the sample was measured using the Z-Scan technique. Non-linear. Large third-order non-linear absorption coefficient-2.65-106cm is obtained at the longitudinal and other off-resonance wavelengths. The variation of the nonlinear absorption coefficient of the Au-Ni-Au composite nanorods with the excitation wavelength and the incident light angle shows that the large enhancement of the third-order optical nonlinearity is due to the strong coupling effect of the longitudinal and other off-excitation elements between the nanorods. By comparing the Au-Ni-Au composite nanorod array and the pure Au single-segment nanorod array, we find that after the first segment of Au is grown, a very thin layer of Ni is deposited, and then the growth of a segment of Au will result in the third-order optical non-linearity. enhancement. this can be attributed to the formation of the nano-capture level in the nano-interface and the co-operation of the local field enhancement between the adjacent rods and the multi-segment in the rod, the design and measurement means of such nanostructures provide a very effective way to control non-linear light in a future plasma optical device, 3. The third order nonlinear optical polarization of the gold nano-cone is studied by the optical Kerr time resolution technique. The third-order nonlinear optical polarization of the gold nano-cone is increased from 7. 4 to 10 to 13 esu, and its quality factor is in the range of ~
10-13esu. cm u, as the excitation light wavelength shifts from the non-resonant wavelength (780nm) to the longitudinal resonance wavelength (825nm). The super-fast time response curve of the gold nano-cone presents two different decay processes. The fast decay process is from 141 to 23fs to 83-8fs, and the slow decay process is from 3200 to 200fs to 2310. The enhancement of the third-order nonlinear optical polarization ratio of 158fs is caused by the local field enhancement caused by the surface plasmon resonance, and the response time of the fast and slow decay process is caused by the resonance of the surface of the gold nano-cone system and the like away from the excitation element. an increase in the probability of scattering of electrons and electrons, electrons and sound These basic studies provide a way to control the time scale of hot electrons, by designing and preparing a suitable nanostructure, adjusting the relaxation time of the surface such as the surface plasmon induced by the off-resonance peak, so as to be applied to photocatalysis, light detection and light. The ultra-fast optical properties of the gold nano-cone are also very important in the field of ultra-fast optical information processing in the future 4. We introduce the research on the surface of aluminum, such as the surface of aluminum, and apply it to the characteristics of the surface of aluminum and the like. Detailed description is given. Based on the excellent properties of the aluminum-based surface and the like, we expect to obtain different structural types and rulers by adjusting the structural parameters and the coating conditions of the substrate The aluminum nano-film of the invention realizes the regulation of the resonance wavelength of the off-excitation element such as the surface of the aluminum and the like, and simultaneously obtains a large third order. As a result, two types of aluminum oxide templates were prepared by the method of template electrochemistry, and the aluminum nano-hole films were formed on the aluminum oxide template by the evaporation method, and the third order optical nonlinearity was determined by the Z-scan technique. The work of the next step is to study the structure parameters of the aluminum oxide template and the surface plasmon resonance wavelength of the aluminum and the three-stage optical non-linearity. The research work on the surface of aluminum and the like provides a simple, easy-to-control and high-feasibility preparation of aluminum
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 錢鷹,孫岳明,劉舉正,吳建耀,李富銘;幾種金屬有機(jī)化合物的合成、結(jié)構(gòu)和光學(xué)非線性[J];中國(guó)激光;1998年03期
2 李淳飛;宋瑛林;;C_(60)分子的研究概況及其新進(jìn)展[J];激光與光電子學(xué)進(jìn)展;1993年03期
3 鄭文琦;單凝;裴松皓;彭慰先;王杏喬;;單體卟啉和二聚體卟啉的合成及其三階光學(xué)非線性的研究[J];有機(jī)化學(xué);2008年03期
4 劉志斌,潘海濱,金鋒,張新夷,周映春,黃素秋;取代基對(duì)卟啉三階光學(xué)非線性及弛豫過程的影響[J];光學(xué)學(xué)報(bào);1996年07期
5 劉志斌,張新夷,周映雪,田宏健,許慧君,周慶復(fù);以柔性鏈共價(jià)連接的卟啉-酞菁二元分子三階光學(xué)非線性及激發(fā)態(tài)弛豫過程的研究[J];科學(xué)通報(bào);1995年14期
6 張強(qiáng),趙志國(guó),李利珍,顧玉宗,邢前,毛艷麗,郭立俊,余保龍,符瑞生,黃亞彬;In_2O_3納米微粒的光學(xué)非線性研究[J];河南大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年03期
7 卿勝蘭;辜敏;甘平;;三階光學(xué)非線性CdS-SiO_2復(fù)合薄膜的電化學(xué)溶膠-凝膠制備及表征[J];硅酸鹽學(xué)報(bào);2013年03期
8 錢鷹,肖國(guó)民,林保平,李海航,袁春偉;新型雙羥乙氨基硝基型偶氮分子的合成、光學(xué)非線性和熱穩(wěn)定性[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年04期
9 卿勝蘭;甘平;;高三階光學(xué)非線性Cd/CdS-SiO_2復(fù)合薄膜的電化學(xué) 溶膠凝膠制備及表征[J];無機(jī)材料學(xué)報(bào);2013年06期
10 楊景海,徐輯彥,盧士忠;新型光學(xué)非線性材料——金屬有機(jī)絡(luò)合物晶體[J];松遼學(xué)刊(自然科學(xué)版);1993年03期
相關(guān)會(huì)議論文 前10條
1 楊柏峰;張程祥;田德誠(chéng);;各向異性半導(dǎo)體摻雜復(fù)合材料的光學(xué)非線性增強(qiáng)特性的理論研究[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊(cè))[C];2001年
2 葉明新;姬利永;張艷武;劉麗英;徐雷;王文澄;;席夫堿類有機(jī)分子的合成和二階光學(xué)非線性研究[A];大珩先生九十華誕文集暨中國(guó)光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年
3 王云祥;宋瑛林;楊俊義;王金勇;趙永貴;翁天滿;;C_(70)在皮秒時(shí)域的三階光學(xué)非線性研究[A];2007年先進(jìn)激光技術(shù)發(fā)展與應(yīng)用研討會(huì)論文集[C];2007年
4 鄧燕;王沛;焦小瑾;明海;;表面等離子體增強(qiáng)的光學(xué)非線性研究[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長(zhǎng)三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年
5 張丙芳;張學(xué)如;李茫雪;白士剛;劉勇;;含光學(xué)非線性介質(zhì)薄膜對(duì)表面等離子波的影響[A];第二屆紅外成像系統(tǒng)仿真測(cè)試與評(píng)價(jià)技術(shù)研討會(huì)論文集[C];2008年
6 王雪華;;準(zhǔn)相位匹配微結(jié)構(gòu)中光學(xué)非線性頻率轉(zhuǎn)換的準(zhǔn)確解-格林函數(shù)方法[A];第八屆全國(guó)光學(xué)前沿問題討論會(huì)論文集[C];2009年
7 佘衛(wèi)龍;;光折變空間孤子的研究[A];第七屆全國(guó)光學(xué)前沿問題討論會(huì)論文摘要集[C];2007年
8 佘衛(wèi)龍;;光折變空間孤子的研究(特邀)[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
9 曹鵬飛;楊昆;;ps/ns脈沖序列作用下熱致光學(xué)非線性的動(dòng)力學(xué)理論研究[A];2006年全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)會(huì)議文集(B 光學(xué)系統(tǒng)設(shè)計(jì)與制造技術(shù)專題)[C];2006年
10 李芳琴;楊峰;宗楠;楊晶;彭欽軍;崔大復(fù);許祖彥;;Z-掃描技術(shù)的理論及KBBF晶體三階光學(xué)非線性實(shí)驗(yàn)研究[A];第八屆全國(guó)光學(xué)前沿問題討論會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 虞應(yīng);表面等離激元共振誘導(dǎo)的金納米結(jié)構(gòu)的三階光學(xué)非線性增強(qiáng)效應(yīng)研究[D];華中科技大學(xué);2015年
2 劉秀;光激勵(lì)下有機(jī)分子重新取向誘導(dǎo)的液晶三階光學(xué)非線性的動(dòng)力學(xué)過程研究[D];復(fù)旦大學(xué);2006年
3 楊俊義;基于相位物體若干光學(xué)非線性測(cè)量技術(shù)的研究[D];蘇州大學(xué);2010年
4 歐陽秋云;靜電自組裝薄膜光學(xué)非線性測(cè)量的實(shí)驗(yàn)與理論研究[D];哈爾濱工業(yè)大學(xué);2006年
5 韓亞萍;金屬銀、銅納米線的制備及其光學(xué)非線性研究[D];黑龍江大學(xué);2008年
6 錢鷹;有機(jī)多極分子和偶極分子的光學(xué)非線性[D];東南大學(xué);2005年
7 李常偉;硒化鋅及芴類衍生物的雙光子光學(xué)非線性研究[D];哈爾濱工業(yè)大學(xué);2010年
8 陳聰;鈣鈦礦氧化物薄膜的電學(xué)及光學(xué)非線性特性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
9 孫真榮;PPV衍生物及金屬有機(jī)配位化合物的三階光學(xué)非線性研究[D];華東師范大學(xué);2000年
10 趙欣;氧化石墨烯及其雜化材料超快光學(xué)非線性研究[D];南開大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 吳巍巍;高靈敏度光學(xué)非線性動(dòng)力學(xué)測(cè)量技術(shù)的研究[D];蘇州大學(xué);2015年
2 賈紀(jì)平;反射Z-掃描方法測(cè)量半導(dǎo)體InN的光學(xué)非線性[D];蘇州大學(xué);2015年
3 史敏;表面三階光學(xué)非線性測(cè)量技術(shù)的研究[D];蘇州大學(xué);2013年
4 彭顯楚;Z-掃描表征技術(shù)與分散黃-7薄膜的光學(xué)非線性研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2005年
5 儲(chǔ)祥勇;新型有機(jī)材料光學(xué)非線性的研究[D];蘇州大學(xué);2014年
6 孫恩偉;摻鉿鈮酸鋰晶體的光學(xué)非線性吸收與折射特性的實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2007年
7 蔡琦婧;反射4f相位相干成像法測(cè)量材料表面光學(xué)非線性的研究[D];蘇州大學(xué);2010年
8 楊永興;Z掃描方法測(cè)量硫系玻璃三階光學(xué)非線性[D];哈爾濱工業(yè)大學(xué);2008年
9 劉宓;基于Z-掃描技術(shù)的半導(dǎo)體納米粒子三階光學(xué)非線性的研究[D];東南大學(xué);2005年
10 方用;非線性吸收誘導(dǎo)的熱光學(xué)非線性研究[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號(hào):2380108
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2380108.html