低維鈦基納米材料的水熱合成及其在染料廢水處理中的應(yīng)用
[Abstract]:The preparation of the low-dimensional titanium-based nano-materials such as titanium dioxide or titanate based on the hydrothermal method has been one of the hot spots of the nano-science for nearly two decades due to the special layered structure and the larger specific surface area. The scientists have done a lot of work around the appearance and control of the low-dimensional titanium-based nano-materials, the improvement of the photocatalytic performance and the potential applications in other fields. However, for the present situation, there is still a lot of space for the research of the low-dimensional titanium-based nano-materials. Through further research, we believe that the low-dimensional titanium-based nano-material has a wide application prospect. In this paper, the structure of the one-dimensional titanium-based nano-material and the improvement of the photocatalytic property of the low-dimensional titanium-based nano-material are studied in this paper. One-dimensional titanium-based nanotubes were prepared by hydrothermal method in the NaOH solution of 10M using P25 as the raw material, and the titanium-based nanotubes with different protonation were obtained by controlling the amount of Na + in 0.1 M hydrochloric acid to H + ion exchange. The contents of the remaining Na + in the samples were respectively 4.996%, 2.914%, 0.668%, 0.192%, 0.061%, and 0.052%, respectively, by ICP. The content of Na + in the partially protonic titanium-based nanotubes plays an important role in the stabilization of the tubular structure. With the increase of the degree of protonation, the morphology of the sample subjected to heat treatment at 450.d egree. C. is transformed from the tube to the rod. The morphology, composition and specific surface area of a series of partially protonic titanium-based nanotubes were studied. The rare-earth-earth Gd-doped TiO _ 2 nanoparticles were prepared by sol-gel method and heat treatment (Gd/ Ti = 0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0). By XRD, the unadulterated titanium dioxide nano-particles show a rutile phase after heat treatment at 700 DEG C, the crystal of the titanium dioxide nano-particles is inhibited with the increase of the Gd doping amount, the composition of the Gd-doped titanium dioxide nano-particles is gradually changed from the rutile to the anatase, while the particle size is gradually reduced. The effect of Gd-doped TiO _ 2 nanoparticles on the photocatalytic degradation of methyl orange with the change of composition and crystallinity was studied. The Gd-doped titanium dioxide nano-particles prepared by the sol-gel method are used as raw materials, and the Gd-doped titanium dioxide nano-tubes are prepared by hydrothermal reaction at the temperature of 150 DEG C for 24 hours in a 10-M NaOH solution and after the Gd-doped titanium dioxide nano-particles are subjected to a post-treatment process. The actual Gd-doping in the titanium dioxide nanotubes doped with Gd-doped titanium dioxide was 0. 085%, 0. 131%, 0. 280%, 0. 706%, 1. 735% and 4.715%, respectively, by ICP. The effect of Gd doping on the components, structure, optical properties and photocatalytic degradation of methyl orange in titanium dioxide nanotubes was studied. The effect of the initial concentration of methyl orange on the degradation ability of the best catalyst was also studied. The Fe 3O 4 ball was prepared by the solvent-heat method with ferric chloride as the raw material. The diameter of the ball was about 198 nm, and it was composed of small particles of about 8 nm. The Fe3O4 ball is self-assembled in a space formed by a polystyrene sulfonic acid-maleic acid copolymer sodium salt molecular chain with a negative charge, and has good water solubility and dispersibility. A layer of SiO2 was coated on the surface of the Fe3O4 by the Stover method, and the presence of the SiO2 layer was demonstrated by means of TEM, XRD and FTIR. It was found that the addition of ethyl orthosilicate had a significant effect on the thickness of the shell, and the agglomeration of the product can be reduced by the way of sub-addition. using the Fe3O4@SiO2 as the core, a layer of amorphous titanium dioxide is coated on the surface to form a Fe3O4@SiO2 @ AT three-layer structure, and the SiO2 layer of the titanium dioxide and the inner layer is tightly combined by the form of a Ti-O-Si bond. The Fe3O4@titanate-level structure was prepared by hydrothermal reaction to the Fe3O4@SiO2 @ AT, and the effect of the hydrothermal temperature and the alkalinity on the morphology of the product was studied. The best reaction condition was obtained. The .Fe3O4@titanate-like structure had a good superparamagnetism and the saturation magnetic susceptibility reached 39.6emu/ g. The adsorption rate of methylene blue is more than 85% in the adsorption experiment, and the adsorption rate of methylene blue after two re-activation is still more than 80%, which is an ideal material for the recovery of the adsorbent. At the same time, according to the similar thought, using the Fe3O4@SiO2 as the core and using the hexadecyl trimethyl bromide as the template agent, the Fe3O4@SiO2 three-layer structure of the surface dielectric hole is prepared. In order to obtain the Fe3O4@SiO2 @ mSiO2 structure with uniform morphology and good dispersion, the effects of reaction parameters such as reaction time, amount of ethyl orthosilicate and the amount of ammonia water on the morphology and structure of the product were studied.
【學(xué)位授予單位】:中國海洋大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:X788;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜仕國,施冬梅,鄧輝;納米材料的特異效應(yīng)及其應(yīng)用[J];自然雜志;2000年02期
2 ;納米材料 新世紀(jì)的黃金材料[J];城市技術(shù)監(jiān)督;2000年10期
3 ;什么是納米材料[J];中國粉體技術(shù);2000年05期
4 鄒超賢;納米材料的制備及其應(yīng)用[J];廣西化纖通訊;2000年01期
5 吳祖其;納米材料[J];光源與照明;2000年03期
6 ;納米材料的特性與應(yīng)用方向[J];河北陶瓷;2000年04期
7 沈青;納米材料的性能[J];江蘇陶瓷;2000年01期
8 李良訓(xùn);納米材料的特性及應(yīng)用[J];金山油化纖;2000年01期
9 劉冰,任蘭亭;21世紀(jì)材料發(fā)展的方向—納米材料[J];青島大學(xué)學(xué)報(自然科學(xué)版);2000年03期
10 劉憶,劉衛(wèi)華,訾樹燕,王彥芳;納米材料的特殊性能及其應(yīng)用[J];沈陽工業(yè)大學(xué)學(xué)報;2000年01期
相關(guān)會議論文 前10條
1 王少強(qiáng);邱化玉;;納米材料在造紙領(lǐng)域中的應(yīng)用[A];'2006(第十三屆)全國造紙化學(xué)品開發(fā)應(yīng)用技術(shù)研討會論文集[C];2006年
2 宋云揚;余濤;李艷軍;;納米材料的毒理學(xué)安全性研究進(jìn)展[A];2010中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第四卷)[C];2010年
3 ;全國第二屆納米材料和技術(shù)應(yīng)用會議[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第二屆納米材料和技術(shù)應(yīng)用會議論文集(上卷)[C];2001年
4 鐘家湘;葛雄章;劉景春;;納米材料改造傳統(tǒng)產(chǎn)業(yè)的實踐與建議[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第二屆納米材料和技術(shù)應(yīng)用會議論文集(上卷)[C];2001年
5 高善民;孫樹聲;;納米材料的應(yīng)用及科研開發(fā)[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第二屆納米材料和技術(shù)應(yīng)用會議論文集(上卷)[C];2001年
6 ;全國第二屆納米材料和技術(shù)應(yīng)用會議[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第二屆納米材料和技術(shù)應(yīng)用會議論文集(下卷)[C];2001年
7 金一和;孫鵬;張穎花;;納米材料的潛在性危害問題[A];中國毒理學(xué)通訊[C];2001年
8 張一方;呂毓松;任德華;陳永康;;納米材料的二種制備方法及其特征[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
9 古宏晨;;納米材料產(chǎn)業(yè)化重大問題及共性問題[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第三屆納米材料和技術(shù)應(yīng)用會議論文集(上卷)[C];2003年
10 馬玉寶;任憲福;;納米科技與納米材料[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國第三屆納米材料和技術(shù)應(yīng)用會議論文集(上卷)[C];2003年
相關(guān)重要報紙文章 前10條
1 記者 周建人;我國出臺首批納米材料國家標(biāo)準(zhǔn)[N];中國建材報;2005年
2 記者 王陽;上海形成納米材料測試服務(wù)體系[N];上海科技報;2004年
3 ;納米材料七項標(biāo)準(zhǔn)出臺[N];世界金屬導(dǎo)報;2005年
4 通訊員 韋承金邋記者 馮國梧;納米材料也可污染環(huán)境[N];科技日報;2008年
5 廖聯(lián)明;納米材料 利弊皆因個頭小[N];健康報;2009年
6 盧水平;院士建議開展納米材料毒性研究[N];中國化工報;2009年
7 郭良宏 中國科學(xué)院生態(tài)環(huán)境研究中心研究員 江桂斌 中國科學(xué)院院士;納米材料的環(huán)境應(yīng)用與毒性效應(yīng)[N];中國社會科學(xué)報;2010年
8 記者 任雪梅 莫璇;中科院納米材料產(chǎn)業(yè)園落戶佛山[N];佛山日報;2011年
9 實習(xí)生 高敏;納米材料:小身材涵蓋多領(lǐng)域[N];科技日報;2014年
10 本報記者 李軍;納米材料加速傳統(tǒng)行業(yè)升級[N];中國化工報;2013年
相關(guān)博士學(xué)位論文 前10條
1 楊楊;功能化稀土納米材料的合成及其生物成像應(yīng)用[D];復(fù)旦大學(xué);2014年
2 王艷麗;基于氧化鈦和氧化錫納米材料的制備及其在能量存儲中的應(yīng)用[D];復(fù)旦大學(xué);2014年
3 吳勇權(quán);含銪稀土納米材料的功能化及其生物成像應(yīng)用研究[D];復(fù)旦大學(xué);2014年
4 曹仕秀;二硫化鎢(WS_2)納米材料的水熱合成與光吸收性能研究[D];重慶大學(xué);2015年
5 廖蕾;基于功能納米材料的電化學(xué)催化研究[D];復(fù)旦大學(xué);2014年
6 胥明;一維氧化物、硫化物納米材料的制備,,功能化與應(yīng)用[D];復(fù)旦大學(xué);2014年
7 李淑煥;納米材料親疏水性的實驗測定與計算預(yù)測[D];山東大學(xué);2015年
8 范艷斌;亞細(xì)胞水平靶向的納米材料的設(shè)計、制備與應(yīng)用[D];復(fù)旦大學(xué);2014年
9 丁泓銘;納米粒子與細(xì)胞相互作用的理論模擬研究[D];南京大學(xué);2015年
10 駱凱;基于金和石墨烯納米材料的生物分子化學(xué)發(fā)光新方法及其應(yīng)用[D];西北大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 向蕓頡;卟啉納米材料的制備及其應(yīng)用研究[D];重慶大學(xué);2010年
2 劉武;層狀納米材料/聚合物復(fù)合改性瀝青的制備與性能[D];華南理工大學(xué);2015年
3 劉小芳;基于納米材料/聚合膜材料構(gòu)建的電化學(xué)傳感器應(yīng)用于生物小分子多組分的檢測[D];西南大學(xué);2015年
4 王小萍;基于金納米材料構(gòu)建的電化學(xué)傳感器及其應(yīng)用[D];上海師范大學(xué);2015年
5 郭建華;金納米材料的修飾及其納米生物界面的研究[D];河北大學(xué);2015年
6 魏杰;普魯士藍(lán)納米粒子的光熱毒性研究[D];上海師范大學(xué);2015年
7 張華艷;改性TiO_2納米材料的制備及其光電性能研究[D];河北大學(xué);2015年
8 胡雪連;基于納米材料的新型熒光傳感體系的構(gòu)筑[D];江南大學(xué);2015年
9 黃樊;氧化鈷基催化材料形貌、晶面控制與催化性能研究[D];昆明理工大學(xué);2015年
10 周佳林;新型核殼結(jié)構(gòu)金納米材料用于腫瘤的近紅外光熱治療研究[D];浙江大學(xué);2015年
本文編號:2378101
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2378101.html