鈷銅鋅鐵氧體—聚吡咯微波吸收材料的制備及吸波機(jī)理分析
發(fā)布時(shí)間:2018-12-11 02:18
【摘要】:鈷銅鋅鐵氧體Co0.8-x Cux Zn0.2Fe2O4(x=0,0.1,0.2,0.3,0.4)和鈷銅鋅鈰鐵氧體Co0.7Cu0.1Zn0.2Cex Fe2-x O4(x=0.05,0.1,0.15,0.2)采用自蔓延燃燒法被合成;聚吡咯/鈷銅鋅鐵氧體(PPy-Co0.7Cu0.1Zn0.2Fe2O4)以及聚吡咯/鈷銅鋅鈰鐵氧體(PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4)復(fù)合物采用原位聚合法被合成。XRD、SEM、FT-IR、VSM和矢量網(wǎng)絡(luò)分析儀被用來表征復(fù)合材料的物相、形貌及電磁性能,對(duì)鈷離子與銅離子的摩爾比和鈰離子摻雜量對(duì)鐵氧體性能的影響,以及鐵氧體摻雜量對(duì)復(fù)合材料性能的影響,結(jié)果表明:(1)由XRD證實(shí)已成功合成了鈷銅鋅鐵氧體Co0.8-x Cux Zn0.2Fe2O4和鈷銅鋅鈰鐵氧體Co0.7Cu0.1Zn0.2Cex Fe2-x O4、聚吡咯(PPy)及PPy-Co0.7Cu0.1Zn0.2Fe2O4和PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4復(fù)合物,這和FT-IR結(jié)果相同;同時(shí)可以看出Co0.8-x Cux Zn0.2Fe2O4(x=0,0.1,0.2,0.3,0.4)和Co0.7Cu0.1Zn0.2Cex Fe2-x O4(x=0.05,0.1,0.15,0.2)為立方尖晶石結(jié)構(gòu),其粒徑分別為47.8nm、62.1nm、58.8nm、59.3nm、58.0nm、50.0nm、51.9nm、47.6nm和42.5nm。晶格常數(shù)依次為0.839、0.833、0.833、0.836、0.836、0.833、0.936、0.837和0.838。(2)SEM圖顯示,Co0.8Zn0.2Fe2O4鐵氧體的形貌各異,有球形、條形或棒狀,還有一部分呈不規(guī)則片狀,相互之間粘連比較緊密;Co0.7Cu0.1Zn0.2Fe2O4鐵氧體為接近球形的小顆粒,并且粒子之間有一定的團(tuán)聚現(xiàn)象,但團(tuán)聚不是很緊密。PPy、PPy-Co0.7Cu0.1Zn0.2Fe2O4和PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4呈近球形,有一定的團(tuán)聚現(xiàn)象,大小比較一致,結(jié)構(gòu)比較規(guī)整。(3)VSM結(jié)果表明,Co0.7Cu0.1Zn0.2Fe2O4的Ms、Mr和Hc分別為83.6emu/g、33.35emu/g和454.54Oe,均大于Co0.8Zn0.2Fe2O4的值;隨著鈰離子的引入,其各項(xiàng)磁性參數(shù)均有所下降,Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4鐵氧體的飽和磁化強(qiáng)度Ms=66.0emu/g、剩余磁化強(qiáng)度Mr=23.6emu/g和矯頑力Hc=341.56Oe;PPy-Co0.7Cu0.1Zn0.2Fe2O4的Ms、Mr和Hc分別為1.29emu/g、0.429emu/g和489.177Oe;PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4的Ms、Mr和Hc分別為5.75emu/g、2.00emu/g和437.97Oe。(4)矢量網(wǎng)絡(luò)分析儀測(cè)試結(jié)果表明:當(dāng)x=0.2時(shí),Co0.8-x Cux Zn0.2Fe2O4鐵氧體的ε’值最大,鈷離子與銅離子的摩爾比的變化對(duì)ε’’和R影響很小;Co0.7Cu0.1Zn0.2Cex Fe2-x O4中當(dāng)x=0.1時(shí),ε’最大,其值在2.43-4.06范圍內(nèi),且當(dāng)頻率在11.52GHz時(shí)ε’出現(xiàn)極大值4.06,Ce3+摻雜量的變化對(duì)ε’’的影響不大,其值均在-1.0-1.0之間,當(dāng)x=0.2時(shí),其值最大,當(dāng)x=0.05時(shí),其反射損耗最小,極小值為-1.427d B出現(xiàn)在12.4GHz;對(duì)于PPy-Co0.7Cu0.1Zn0.2Fe2O4,鐵氧體在復(fù)合物中含量為15%時(shí),復(fù)合物在18GHz附近出現(xiàn)極小反射損耗為-12.8d B;對(duì)于PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4,其ε’值在鐵氧體質(zhì)量分?jǐn)?shù)為10%時(shí)達(dá)到最大,ε’’值在鐵氧體質(zhì)量分?jǐn)?shù)為15%時(shí)達(dá)到最大,且極大值為3.33,出現(xiàn)在12.23GHz附近;鐵氧體摻雜量對(duì)復(fù)合物反射損耗的影響不大,在頻率約為12GHz和18GHz時(shí),也出現(xiàn)了極小反射損耗-3.3d B。
[Abstract]:Cobalt-copper-zinc ferrite Co0.8-x Cux Zn0.2Fe2O4 (xl0. 0. 1) and cobalt, copper, zinc and cerium ferrite Co0.7Cu0.1Zn0.2Cex Fe2-x O4 (x0. 05) were synthesized by self propagating combustion (SHS). Polypyrrole / cobalt-copper-zinc ferrite (PPy-Co0.7Cu0.1Zn0.2Fe2O4) and polypyrrole / cobalt-copper-zinc cerium ferrite (PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4) composites were synthesized by in-situ polymerization. XRD,SEM,FT-IR, VSM and vector network analyzer were used to characterize the phase, morphology and electromagnetic properties of the composites, and the effects of the molar ratio of cobalt ion to copper ion and the amount of cerium ion doping on the properties of ferrite. The results show that: (1) Cobalt copper-zinc ferrite Co0.8-x Cux Zn0.2Fe2O4 and cobalt-copper-zinc cerium ferrite Co0.7Cu0.1Zn0.2Cex Fe2-x O _ 4 have been successfully synthesized by XRD, and the results show that: (1) Cobalt copper-zinc ferrite Co0.8-x Cux Zn0.2Fe2O4 and cobalt-copper-zinc cerium ferrite Co0.7Cu0.1Zn0.2Cex Fe2-x O _ 4 have been synthesized successfully by XRD. The results of polypyrrole (PPy) and PPy-Co0.7Cu0.1Zn0.2Fe2O4 and PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 complexes are the same as those of FT-IR. At the same time, it can be seen that Co0.8-x Cux Zn0.2Fe2O4 (x 0. 1 + 0. 2) and Co0.7Cu0.1Zn0.2Cex Fe2-x O 4 (x 0. 05 0. 1 0. 1 0. 150. 2) are cubic spinel structures, and their particle sizes are 47. 8 nm ~ (-1) and 58. 8 nm, respectively. 59.3nmnmnmnmc58.0nmH50.0nmONm ~ 51.9nm ~ 57.6nm and 42.5nm 路m ~ (-1). The lattice constants are 0.839 / 0.833 / 0.833 / 0.836 / 0.836 / 0.836 / 0.936 / 0.837 and 0.8388.38 respectively. (2) SEM diagrams show that the morphology of Co0.8Zn0.2Fe2O4 ferrite is different, with spherical, stripe or rod shape, and some with irregular flakes. The adhesion between each other is relatively close; Co0.7Cu0.1Zn0.2Fe2O4 ferrite is a small particle close to spherical, and there is a certain aggregation between the particles, but the agglomeration is not very close. PPy,PPy-Co0.7Cu0.1Zn0.2Fe2O4 and PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 are nearly spherical. (3) the results of VSM showed that the Ms,Mr and Hc of Co0.7Cu0.1Zn0.2Fe2O4 were 83.6 emu / g 33.35 emu / g and 454.54 Oe respectively, which were higher than that of Co0.8Zn0.2Fe2O4; With the introduction of cerium ion, the magnetic parameters decreased, and the saturation magnetization of Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 ferrite, Ms=66.0emu/g, residual magnetization Mr=23.6emu/g and coercivity Hc=341.56Oe; decreased. The Ms,Mr and Hc of PPy-Co0.7Cu0.1Zn0.2Fe2O4 were 1.29 emu / g and 489.177 Oe, respectively. The Ms,Mr and Hc of PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 are 5.75 emu / g 2.00 emu / g and 437.97 Oe. respectively. (4) the results of vector network analyzer show that when x = 0.2, The 蔚 'value of Co0.8-x Cux Zn0.2Fe2O4 ferrite is the largest, and the change of molar ratio of cobalt ion to copper ion has little effect on 蔚' and R; In Co0.7Cu0.1Zn0.2Cex Fe2-x O4, when x = 0.1, 蔚'is the largest and its value is in the range of 2.43-4.06, and the maximum value of 蔚'is 4.06% when the frequency is in 11.52GHz, and the change of doping amount of 4.06% Ce3 has little effect on 蔚'. Their values are between -1.0-1.0, when x = 0.2, their values are the largest, and when x = 0.05, their reflection loss is the smallest, and the minimum value is -1.427dB appearing at 12.4GHz; When the content of PPy-Co0.7Cu0.1Zn0.2Fe2O4, ferrite in the complex is 15, the minimal reflectance loss of the complex near 18GHz is -12.8 dB; For PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4, the 蔚 'value reaches the maximum when the ferrite mass fraction is 10, 蔚' value reaches the maximum when the ferrite mass fraction is 15, and the maximum value is 3.33, which appears near 12.23GHz. The ferrite doping content has little effect on the reflection loss of the complex. When the frequency is about 12GHz and 18GHz, there is also a minimal reflectance loss of -3.3 dB.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33
本文編號(hào):2371672
[Abstract]:Cobalt-copper-zinc ferrite Co0.8-x Cux Zn0.2Fe2O4 (xl0. 0. 1) and cobalt, copper, zinc and cerium ferrite Co0.7Cu0.1Zn0.2Cex Fe2-x O4 (x0. 05) were synthesized by self propagating combustion (SHS). Polypyrrole / cobalt-copper-zinc ferrite (PPy-Co0.7Cu0.1Zn0.2Fe2O4) and polypyrrole / cobalt-copper-zinc cerium ferrite (PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4) composites were synthesized by in-situ polymerization. XRD,SEM,FT-IR, VSM and vector network analyzer were used to characterize the phase, morphology and electromagnetic properties of the composites, and the effects of the molar ratio of cobalt ion to copper ion and the amount of cerium ion doping on the properties of ferrite. The results show that: (1) Cobalt copper-zinc ferrite Co0.8-x Cux Zn0.2Fe2O4 and cobalt-copper-zinc cerium ferrite Co0.7Cu0.1Zn0.2Cex Fe2-x O _ 4 have been successfully synthesized by XRD, and the results show that: (1) Cobalt copper-zinc ferrite Co0.8-x Cux Zn0.2Fe2O4 and cobalt-copper-zinc cerium ferrite Co0.7Cu0.1Zn0.2Cex Fe2-x O _ 4 have been synthesized successfully by XRD. The results of polypyrrole (PPy) and PPy-Co0.7Cu0.1Zn0.2Fe2O4 and PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 complexes are the same as those of FT-IR. At the same time, it can be seen that Co0.8-x Cux Zn0.2Fe2O4 (x 0. 1 + 0. 2) and Co0.7Cu0.1Zn0.2Cex Fe2-x O 4 (x 0. 05 0. 1 0. 1 0. 150. 2) are cubic spinel structures, and their particle sizes are 47. 8 nm ~ (-1) and 58. 8 nm, respectively. 59.3nmnmnmnmc58.0nmH50.0nmONm ~ 51.9nm ~ 57.6nm and 42.5nm 路m ~ (-1). The lattice constants are 0.839 / 0.833 / 0.833 / 0.836 / 0.836 / 0.836 / 0.936 / 0.837 and 0.8388.38 respectively. (2) SEM diagrams show that the morphology of Co0.8Zn0.2Fe2O4 ferrite is different, with spherical, stripe or rod shape, and some with irregular flakes. The adhesion between each other is relatively close; Co0.7Cu0.1Zn0.2Fe2O4 ferrite is a small particle close to spherical, and there is a certain aggregation between the particles, but the agglomeration is not very close. PPy,PPy-Co0.7Cu0.1Zn0.2Fe2O4 and PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 are nearly spherical. (3) the results of VSM showed that the Ms,Mr and Hc of Co0.7Cu0.1Zn0.2Fe2O4 were 83.6 emu / g 33.35 emu / g and 454.54 Oe respectively, which were higher than that of Co0.8Zn0.2Fe2O4; With the introduction of cerium ion, the magnetic parameters decreased, and the saturation magnetization of Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 ferrite, Ms=66.0emu/g, residual magnetization Mr=23.6emu/g and coercivity Hc=341.56Oe; decreased. The Ms,Mr and Hc of PPy-Co0.7Cu0.1Zn0.2Fe2O4 were 1.29 emu / g and 489.177 Oe, respectively. The Ms,Mr and Hc of PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4 are 5.75 emu / g 2.00 emu / g and 437.97 Oe. respectively. (4) the results of vector network analyzer show that when x = 0.2, The 蔚 'value of Co0.8-x Cux Zn0.2Fe2O4 ferrite is the largest, and the change of molar ratio of cobalt ion to copper ion has little effect on 蔚' and R; In Co0.7Cu0.1Zn0.2Cex Fe2-x O4, when x = 0.1, 蔚'is the largest and its value is in the range of 2.43-4.06, and the maximum value of 蔚'is 4.06% when the frequency is in 11.52GHz, and the change of doping amount of 4.06% Ce3 has little effect on 蔚'. Their values are between -1.0-1.0, when x = 0.2, their values are the largest, and when x = 0.05, their reflection loss is the smallest, and the minimum value is -1.427dB appearing at 12.4GHz; When the content of PPy-Co0.7Cu0.1Zn0.2Fe2O4, ferrite in the complex is 15, the minimal reflectance loss of the complex near 18GHz is -12.8 dB; For PPy-Co0.7Cu0.1Zn0.2Ce0.05Fe1.95O4, the 蔚 'value reaches the maximum when the ferrite mass fraction is 10, 蔚' value reaches the maximum when the ferrite mass fraction is 15, and the maximum value is 3.33, which appears near 12.23GHz. The ferrite doping content has little effect on the reflection loss of the complex. When the frequency is about 12GHz and 18GHz, there is also a minimal reflectance loss of -3.3 dB.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 施冬梅,鄧輝,杜仕國,田春雷;雷達(dá)隱身材料技術(shù)的發(fā)展[J];兵器材料科學(xué)與工程;2002年01期
2 王麗熙;張晶;黃嘯谷;王洪洲;張其土;;鐵氧體/石墨復(fù)合吸波涂層的微波吸收性能[J];材料科學(xué)與工程學(xué)報(bào);2011年05期
3 歐平;徐剛;倪利紅;韓高榮;;α-Fe_2O_3的水熱法合成及其相形成機(jī)理[J];稀有金屬材料與工程;2008年S2期
4 孔絲紡;文秀芳;皮丕輝;程江;楊卓如;;磁性多孔γ-Fe_2O_3/P(St-DVB-MAA)聚合物微球的制備及其表征[J];高分子學(xué)報(bào);2008年02期
5 張晶;王麗熙;黃嘯谷;張其土;;鐵氧體/碳復(fù)合吸收劑的水熱法制備及電磁性能研究[J];功能材料;2012年21期
6 李利;;中短波天線電磁輻射分析[J];黑龍江科技信息;2014年10期
7 王相綦,馮德仁,尚雷,裴元吉,何寧,趙濤;磁矩進(jìn)動(dòng)阻尼引起相位滯后的實(shí)驗(yàn)測(cè)量和理論分析[J];物理學(xué)報(bào);2004年12期
,本文編號(hào):2371672
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2371672.html
最近更新
教材專著