AFM探針誘導介電泳的三維納米操作與裝配
[Abstract]:With the rapid development of nanoscale research, nanofabrication with nanometer operation as the core is one of the most prospective and leading areas in nanotechnology. Compared with the nanotechnology based on self-assembly, optical tweezers, magnetic tweezers and SEM, it has some limitations, such as low precision, low efficiency, high cost or special requirements for the performance of the sample. It has the advantages of high resolution and high precision in atomic force microscope (AFM),). Dielectric electrophoretic (DEP), with high operation efficiency and universality has a wider range of applications in the field of nanometer operation. However, AFM still has low operation efficiency and can not meet the needs of batch operation. Traditional DEP operation requires fixed physical electrodes, which has poor flexibility, and lacks the ability of high precision and single operation in nanometer scale. These factors limit the further development and application of AFM and DEP. Therefore, how to take advantage of the advantages and avoid disadvantages and complement the advantages of AFM and DEP nanooperations, that is to say, combine the excellent positioning and high precision operation ability of AFM with the efficient operation ability of DEP technology, is a problem worth studying. In order to achieve the above research goal, the theoretical and experimental research on the three-dimensional nano-manipulation and assembly of AFM probe induced dielectric electrophoresis was carried out in this paper. The main work includes the following aspects: (1) the design of the experimental model and the construction of the experimental operating platform: the AFM conductive probe and the ITO conductive glass are combined as the opposite electrode. The conductive probe acts as a movable 3D DEP tweezers to induce DEP operation in the solution. (2) theoretical simulation and analysis of AFM probe induced dielectric electrophoresis: using COMSOL Multiphysics 4.3a software, a model is established to simulate and analyze several parameters that affect the experimental results. (3) Design of microfluidic chip Processing: for the controllability of the process of experimental operation, Continuity, According to the principle of the connectors, a microfluidic chip is designed to maintain a stable liquid operating environment continuously and accurately. (4) the fast automatic repositioning method for nano-targets for AFM is studied: in order to solve the problem of accurately characterizing the experimental results, Because of the contamination of the probe and the moving of the sample substrate, we need to face the problem of target relocating. We have explored a fast automatic relocation method for the nanometer target for AFM, which can identify a pair of reference points. It is possible to realize the localization of multiple nanoscale targets on the substrate in turn. (5) the evaluation criteria for the characterization of experimental results: the volume is used as the criterion for evaluating the experimental results, and the calculation method of equal volume conversion is explored. (6) Verification and optimization of experimental parameters. The nanospheres were operated to form a three-dimensional nano-lattice and a linear structure. Through the design and construction of the experimental model of three-dimensional nanoscale operation and assembly of AFM probe induced dielectric electrophoresis, the detailed experimental verification is carried out on the basis of theoretical analysis. It is fully proved that this probe induced dielectric electrophoresis technology is feasible. In the future, it will have great potential in the rapid fabrication of nanostructures and arrays, as well as in the precise, controllable and non-destructive operation of biological nanoparticles.
【學位授予單位】:沈陽理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB383.1
【相似文獻】
相關期刊論文 前10條
1 陳雨田;;介電泳原理與介電分選[J];國外金屬礦選礦;1965年09期
2 張鶴騰;韓萍;沈光濤;戴景峰;陳慧英;;介電泳及其在無機微粒分離研究中的應用[J];中央民族大學學報(自然科學版);2008年03期
3 蔣珂瑋;劉偉景;萬麗娟;張健;;對于氧化鋅棒狀結構的介電泳操控研究[J];傳感技術學報;2008年07期
4 王淑娥;曲艷麗;董再勵;楊洋;周磊;;基于介電泳機理的金納米顆粒傳感器裝配方法[J];微納電子技術;2011年12期
5 張鑫杰;倪中華;;納米粒子介電泳的分子動力學模擬[J];東南大學學報(自然科學版);2008年05期
6 許靜;趙湛;方震;劉泳宏;杜利東;耿道渠;;基于介電泳誘捕與阻抗測量的三維網格型生物傳感器的研究[J];分析化學;2011年03期
7 劉偉景;張健;萬麗娟;蔣珂瑋;呂家云;;介電泳操控納米材料及其在微納傳感器中的應用[J];傳感技術學報;2008年01期
8 倪中華;張鑫杰;易紅;;介電泳驅動納米膠體分離的分子動力學模擬[J];中國科學(E輯:技術科學);2009年06期
9 王淑娥;曲艷麗;董再勵;周磊;劉柱;;基于光誘導介電泳的微粒自動化操作實驗研究[J];微納電子技術;2011年02期
10 陳慧英;朱岳麟;張鶴騰;郭紅;李荻;;油品中無機微粒的介電響應(英文)[J];石油學報(石油加工);2010年02期
相關會議論文 前5條
1 陳波;吳健康;;介電泳顆粒的相互作用和細胞珍珠鏈現象[A];中國力學大會——2013論文摘要集[C];2013年
2 劉偉景;張健;萬麗娟;蔣珂瑋;;納米結構在微納傳感器應用中的介電泳操控研究[A];第六屆中國功能材料及其應用學術會議論文集(6)[C];2007年
3 任玉坤;姜洪源;;基于金屬/溶液界面雙電層效應的金屬粒子反常規(guī)介電泳特征[A];中國力學大會——2013論文摘要集[C];2013年
4 于鵬;李明林;董再勵;周磊;劉柱;;基于行波介電泳原理的微粒操縱系統(tǒng)及實驗研究[A];2008中國儀器儀表與測控技術進展大會論文集(Ⅰ)[C];2008年
5 任春平;;利用弧狀電極產生步進電場之介電泳細胞預濃縮晶片[A];2010年第四屆微納米海峽兩岸科技暨納微米系統(tǒng)與加工制備中的力學問題研討會摘要集[C];2010年
相關博士學位論文 前1條
1 Muhammad Rizwan Malik;[D];華中科技大學;2011年
相關碩士學位論文 前10條
1 韓萍;介電泳研究細胞介電響應規(guī)律、分離及重金屬毒作用機理[D];中央民族大學;2008年
2 索燦;ZnO一維納米材料制備、修飾、介電泳操控及氣敏傳感器構建研究[D];鄭州大學;2015年
3 錢成;面向細胞位姿調節(jié)的介電泳操作機理分析與實驗研究[D];蘇州大學;2015年
4 周培林;AFM探針誘導介電泳的三維納米操作與裝配[D];沈陽理工大學;2015年
5 胡婧;吸附—介電泳法去除水中氨氮的工藝及機理研究[D];中央民族大學;2015年
6 李彬;流道結構誘導的絕緣介電泳分離微尺度粒子研究[D];哈爾濱工業(yè)大學;2014年
7 馮國敬;介電泳驅動球形粒子的運動速度及其影響因素研究[D];哈爾濱工業(yè)大學;2012年
8 吳晶;吸附/介電泳法去除水中重金屬離子[D];中央民族大學;2013年
9 龔杰;用于介電泳操縱的C-MEMS電極設計與制備技術研究[D];華中科技大學;2009年
10 張璐;介電泳對TiO_2等無機納米微粒操控定位及制備的研究[D];中央民族大學;2012年
,本文編號:2319802
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2319802.html