面向壓電陶瓷納米驅(qū)動(dòng)平臺(tái)的先進(jìn)控制器設(shè)計(jì)
[Abstract]:Nanotechnology is a revolutionary technology to change the way of life and production of human beings in all aspects. It has been widely used in all fields of human life. Nano-localization technology is the basis for the application of nano-technology. Piezoelectric ceramic displacement actuator can achieve nano-level displacement, but the existence of nonlinear characteristics such as hysteresis will greatly affect its tracking and positioning performance. In this paper, the compensation of hysteresis of piezoelectric ceramics is studied from three different angles. Firstly, the classical model-based control method is used: according to the input and output data of piezoelectric ceramics, the Prandtl-Ishlinkii model is used to model the hysteresis. In order to make up for the difference between the classical Prandtl-Ishlinkii model and the real hysteresis, a new operator is introduced on the basis of the classical Prandtl-Ishlinkii model, and an improved Prandtl-Ishlinkii model is obtained. According to the obtained hysteresis model, the inverse model is derived, and the inverse model is used to linearize the system according to the principle of identity mapping, and then the traditional controller design method is adopted. A feedback controller is designed to compensate the modeling error for the linearized system. Considering the complexity of hysteresis modeling, a novel L1 adaptive control algorithm is applied to the hysteresis compensation problem of piezoelectric ceramics, thus eliminating the complicated process of hysteresis modeling in traditional methods. The piezoelectric drive system is decomposed into a hysteresis subsystem and a linear dynamic subsystem, and the output of the hysteresis subsystem is used as the input of the linear dynamic subsystem. The hysteresis is transformed into the disturbance of the linear system, and then the L1 adaptive control algorithm is used to deal with it. The stability of the system is proved by theoretical derivation. Compared with the proportional integral-differential (PID) controller in the experiment, a better control effect is obtained, and the effectiveness of the control algorithm is verified. Finally, combining the advantages of the former two methods, the L1 adaptive control algorithm based on Prandtl-Ishlinkii model is adopted. The decoupling structure is still used to describe the system, and the Prandtl-Ishlinkii model is used to transform the hysteresis. Compared with the L1 adaptive controller alone, it can not only reduce the number of uncertain parameters in the L1 adaptive controller, but also reduce the number of uncertain parameters in the L1 adaptive controller. At the same time, the range of uncertain parameters is reduced, which is beneficial to further reduce the control error.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃海燕;陀螺馬達(dá)用磁滯合金研究[J];上海鋼研;1998年04期
2 徐光澤,郜松,李曼義,肖闌楠,劉俊昆;磁記錄中磁滯的計(jì)算機(jī)模擬分析[J];電聲技術(shù);2001年05期
3 邵小達(dá) ,胡慶勝;提高Co_(52)V_(11)合金磁滯性能的試驗(yàn)研究[J];上海鋼研;1983年01期
4 李普興,宋海蛟;YGdAlMn柘榴石的磁滯性能及其溫度穩(wěn)定性[J];清華北大理工學(xué)報(bào);1974年02期
5 StevenM·Pilgrim;MonaMassuda;JackieD·Prodey;AndrewP·Ritter;王珍;;若干Pb(Mg_(1/3)Nb_(2/3))O_3—PbTiO_3—(Ba,Sr)TiO_3陶瓷的機(jī)電性能:Ⅰ[J];河北陶瓷;1993年06期
6 ;具有兩段矩形磁滯特性的磁性材料[J];儀表材料;1972年S2期
7 李樹棠;王世偉;孫孝華;梁亮;文先哲;簡(jiǎn)毓殐;;鑄造Fe-Co-Mo系低工作場(chǎng)磁滯合金研究[J];儀表材料;1982年05期
8 郭子政;;Jiles-Atherton模型及其應(yīng)用[J];信息記錄材料;2013年04期
9 蘇杰 ,高銀露 ,李榮;18Ni(350)馬氏體時(shí)效鋼磁滯性能的研究[J];鋼鐵研究學(xué)報(bào);1992年S1期
10 樊開記;2J4磁滯合金的熱處理[J];機(jī)械工人;1998年04期
相關(guān)會(huì)議論文 前5條
1 劉福貴;楊慶新;顏威利;;一種考慮磁滯特性的磁場(chǎng)數(shù)值計(jì)算方法[A];電工理論與新技術(shù)學(xué)術(shù)年會(huì)論文集[C];2005年
2 龍毅;傅斌;靳嵐峰;;Ni-Mn-Ga合金的磁卡效應(yīng)[A];全國(guó)磁熱效應(yīng)材料和磁制冷技術(shù)學(xué)術(shù)研討會(huì)論文集[C];2009年
3 田春;汪鴻振;;超磁致伸縮換能器磁滯模型研究[A];2004年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
4 吳國(guó)定;;磁滯合金2J27(Co12Mo17)磁鋼研制概論[A];第八屆全國(guó)永磁電機(jī)學(xué)術(shù)交流會(huì)論文集[C];2007年
5 白保東;郭志楠;謝德馨;曾林鎖;;基于Preisach磁滯模型描述的魔環(huán)的優(yōu)化設(shè)計(jì)[A];中國(guó)生物醫(yī)學(xué)工程進(jìn)展——2007中國(guó)生物醫(yī)學(xué)工程聯(lián)合學(xué)術(shù)年會(huì)論文集(下冊(cè))[C];2007年
相關(guān)博士學(xué)位論文 前4條
1 曾建斌;矢量磁滯數(shù)學(xué)模型理論及其應(yīng)用研究[D];沈陽(yáng)工業(yè)大學(xué);2011年
2 劉福貴;考慮磁滯特性的磁場(chǎng)數(shù)值分析及磁特性測(cè)量技術(shù)研究[D];河北工業(yè)大學(xué);2001年
3 谷國(guó)迎;壓電陶瓷驅(qū)動(dòng)微位移平臺(tái)的磁滯補(bǔ)償控制理論和方法研究[D];上海交通大學(xué);2012年
4 陳震;壓電智能材料IPMC的建模與控制研究[D];東北大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 康傳會(huì);基于最小二乘支持向量機(jī)的磁滯建模[D];浙江師范大學(xué);2010年
2 文雯;感性器件磁滯特性Hspice宏模型建立與應(yīng)用[D];電子科技大學(xué);2006年
3 楊延菊;基于神經(jīng)網(wǎng)絡(luò)的Jiles-Atherton磁滯模型的實(shí)現(xiàn)[D];華北電力大學(xué);2012年
4 李青峰;基于混合算法的J-A磁滯模型的實(shí)現(xiàn)[D];華北電力大學(xué)(河北);2010年
5 任靜;JA/SW三維混合磁滯模型理論及仿真研究[D];河北工業(yè)大學(xué);2011年
6 劉慶永;機(jī)械運(yùn)動(dòng)系統(tǒng)的磁滯建模與補(bǔ)償控制研究[D];濟(jì)南大學(xué);2013年
7 邵向麗;考慮磁滯非線性的雙饋調(diào)速系統(tǒng)的建模與仿真研究[D];湖北工業(yè)大學(xué);2011年
8 劉毛娜;磁控形狀記憶合金驅(qū)動(dòng)器的磁滯非線性建模與控制方法研究[D];杭州電子科技大學(xué);2014年
9 張杰;面向壓電陶瓷納米驅(qū)動(dòng)平臺(tái)的先進(jìn)控制器設(shè)計(jì)[D];浙江大學(xué);2015年
10 郭爽;納米磁性材料的磁矩動(dòng)力學(xué)過程和磁滯行為研究[D];東北大學(xué);2011年
,本文編號(hào):2311331
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2311331.html