天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

新型納米電極在量子點(diǎn)太陽電池中的應(yīng)用

發(fā)布時(shí)間:2018-10-26 20:21
【摘要】:量子點(diǎn)太陽電池(QDSCs)因其具有制作工藝簡(jiǎn)單、柔韌性好、生產(chǎn)能耗低等優(yōu)異性能,從而引起研究人員的廣泛關(guān)注,已成為國際上研究的新熱點(diǎn)。目前,QDSCs的發(fā)展仍處于起步階段,已報(bào)道的QDSCs效率約從1%到6%,平均只有3%左右,遠(yuǎn)遠(yuǎn)不及單異質(zhì)結(jié)太陽電池的極限效率。一方面,傳統(tǒng)的對(duì)電極的制備主要采用真空蒸鍍法,這種方法不僅需要消耗大量的能量,而且制備出的對(duì)電極機(jī)械性能差,晶體形態(tài)復(fù)雜,粒子邊界粘附性欠佳,導(dǎo)致對(duì)電極和光敏化層接觸性差;另一方面,量子點(diǎn)對(duì)太陽光譜吸收較窄,且未能實(shí)現(xiàn)與n型半導(dǎo)體材料的最佳匹配,這無疑大大限制了電池器件的提升。因此,通過相對(duì)簡(jiǎn)單的方法,制備低成本、高效的對(duì)電極以及拓寬量子點(diǎn)半導(dǎo)體材料對(duì)太陽光譜的吸收范圍,對(duì)QDSCs實(shí)際應(yīng)用具有十分重要的意義。針對(duì)上述兩個(gè)問題,本論文開展了以下創(chuàng)新型工作:(1)通過水熱法成功制備了Co-Ru合金對(duì)電極,以及純Ru、Co金屬對(duì)電極。水熱法是一種低成本、易操作的制備對(duì)電極方法,使用該方法制備的納米纖維狀的Co-Ru合金對(duì)電極,具有高比表面積、優(yōu)異的電學(xué)性能以及良好的穩(wěn)定性。此外,采用水相法合成出吸收邊可調(diào)的CdS膠體量子點(diǎn)。通過優(yōu)化合成工藝,獲得了高熒光量子產(chǎn)率,寬吸收光譜的CdS量子點(diǎn)半導(dǎo)體材料,并組裝成量子點(diǎn)太陽電池。結(jié)果表明,合金對(duì)電極具有協(xié)同作用,Co-Ru合金對(duì)電極擁有更低的傳荷電阻。采用Co-Ru合金對(duì)電極制備的QDSCs光電轉(zhuǎn)換效率達(dá)到3.04%,優(yōu)于純Co對(duì)電極(1.97%)、純Ru對(duì)電極(1.31%)。(2)通過水熱法制備出Ni-Ru合金及Ni、Ru金屬對(duì)電極,研究對(duì)電極的電化學(xué)性能及組裝QDSCs器件的光電性能。另外,采用油相法制備出CdSe膠體量子點(diǎn)。優(yōu)化合成工藝,獲得熒光量子產(chǎn)率最佳的量子點(diǎn),并組裝電池器件。研究對(duì)電極對(duì)電池器件的光電性能的影響。(3)通過機(jī)械剝離法制備石墨烯,采用低溫旋涂法制備出石墨烯對(duì)電極,利用電化學(xué)方法如塔菲爾極化曲線、電化學(xué)阻抗譜等,研究旋涂工藝、石墨烯薄膜厚度等對(duì)QDSCs器件的光電性能影響。
[Abstract]:Quantum dot solar cell (QDSCs) has attracted wide attention due to its simple fabrication process, good flexibility and low energy consumption, which has become a new research hotspot in the world. At present, the development of QDSCs is still in its infancy. The reported efficiency of QDSCs ranges from 1% to 6%, with an average of only about 3%, which is far from the limit efficiency of single heterojunction solar cells. On the one hand, the traditional counter electrode is mainly prepared by vacuum evaporation. This method not only consumes a lot of energy, but also has poor mechanical properties, complex crystal morphology and poor particle boundary adhesion. The contact between the electrode and Guang Min layer is poor; On the other hand, the quantum dots have narrower absorption to the solar spectrum and fail to match the n-type semiconductor materials, which undoubtedly limits the improvement of the battery devices. Therefore, it is of great significance for the practical application of QDSCs to prepare low cost, efficient counter electrodes and broaden the absorption range of quantum dot semiconductor materials to the solar spectrum by a relatively simple method. Aiming at the above two problems, the following innovative works have been carried out in this paper: (1) Co-Ru alloy opposite electrodes and pure Ru,Co metal opposite electrodes have been successfully prepared by hydrothermal method. Hydrothermal method is a low cost and easy to operate method for preparing counter electrode. Nano-fibrous Co-Ru alloy prepared by this method has high specific surface area, excellent electrical properties and good stability. In addition, CdS colloidal quantum dots with adjustable absorption edge were synthesized by aqueous phase method. The CdS quantum dot semiconductor materials with high fluorescence quantum yield and wide absorption spectrum were obtained by optimizing the synthesis process and were assembled into quantum dot solar cells. The results show that the alloy has synergistic effect on the electrode and Co-Ru alloy has lower load transfer resistance to the electrode. The optoelectronic conversion efficiency of QDSCs prepared with Co-Ru alloy electrode is 3.04, which is better than that of pure Co opposite electrode (1.97%). The pure Ru opposite electrode (1.31%). (2) is prepared by hydrothermal method to prepare Ni-Ru alloy and Ni,. The electrochemical properties of Ru metal electrodes and the optoelectronic properties of assembled QDSCs devices were studied. In addition, CdSe colloidal quantum dots were prepared by oil phase method. Optimizing the synthesis process to obtain the quantum dots with the best fluorescence quantum yield, and assemble the battery devices. The effect of electrode on the photoelectric properties of battery devices was studied. (3) graphene was prepared by mechanical stripping method, graphene opposite electrode was prepared by low temperature spin-coating method, and electrochemical methods such as Tafel polarization curve, electrochemical impedance spectroscopy, etc. The effects of spin-coating technology and graphene film thickness on the optoelectronic properties of QDSCs devices are studied.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM914.4;TB383.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 竹懷君;黃光勝;;染料敏化太陽能電池柔性對(duì)電極的研究進(jìn)展[J];化工新型材料;2012年03期

2 李國;胡志強(qiáng);高巖;劉敬肖;劉貴山;;染料敏化太陽能電池對(duì)電極的研究進(jìn)展[J];材料導(dǎo)報(bào);2007年12期

3 黃光勝;阮曉莉;竹懷君;;基于不同濃度鉑對(duì)電極的染料敏化太陽能電池的性能研究[J];功能材料;2011年02期

4 李靖;孫明軒;張曉艷;崔曉莉;;染料敏化太陽能電池對(duì)電極[J];物理化學(xué)學(xué)報(bào);2011年10期

5 馬換梅;田建華;劉懿平;單忠強(qiáng);;染料敏化太陽能電池低鉑對(duì)電極的制備和性能[J];化學(xué)工業(yè)與工程;2011年06期

6 楊盼;許晨陽;林紅;趙曉沖;李建保;;染料敏化太陽能電池碳對(duì)電極的制備及性能[J];硅酸鹽學(xué)報(bào);2011年12期

7 儲(chǔ)玲玲;高玉榮;武明星;王琳琳;馬廷麗;;附著性能優(yōu)異的碳對(duì)電極的制備及其在染料敏化太陽能電池中的應(yīng)用[J];物理化學(xué)學(xué)報(bào);2012年07期

8 辛鋼;吳麗瓊;黃曉飛;溫斌;馬廷麗;;熱解鍍鉑工藝增強(qiáng)對(duì)電極的性能(英文)[J];稀有金屬材料與工程;2013年06期

9 丁雨田;尚興記;王t,

本文編號(hào):2296841


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2296841.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a5caf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com