碳納米管薄膜在鋰離子電池中的應(yīng)用研究
[Abstract]:Energy and environmental problems are becoming more and more serious, forcing people to develop new energy supply systems and energy storage systems. Because of its high energy conversion rate and low pollution, battery has become an important alternative to fossil fuel energy. Among them, lithium ion battery has been paid more and more attention because of its advantages of high output voltage and large specific capacity. With the development of portable electronic devices, electric vehicles, smart grids and other lithium ion battery applications, the requirements of battery performance are constantly increasing. How to further improve the specific capacity and energy density of the battery has become one of the core issues in the development of lithium technology. Limited by the current properties of electrode materials, lithium ion batteries often have to introduce conductive agent, fluid collection, binder and other non-electrochemical active components. Therefore, how to effectively reduce the specific gravity of these components is of great significance to improve the specific capacity and energy density of lithium ion batteries. In this work, the supercis carbon nanotubes are arranged neatly, the surface is clean, and the van der Waals force between tubes is strong. This material with excellent performance is applied in the field of conducting agent and fluid collecting of lithium ion battery. The specific capacity and energy density of the battery are improved. In the aspect of conductive agent, it is proved that the size, aspect ratio and dispersity of conductive agent are the important factors that affect the performance of conductive agent by characterizing the electrode performance of different kinds of conductive agents. It is also found that the composite structure with both long range and short range charge transport is a more efficient conductive agent system. Based on this conclusion, a conductive carbon black-supercis carbon nanotube composite conductive agent was developed by using film laying and cold rolling process, which realized the full dispersion and utilization of the conductive agent. The conductivity of the electrode was improved, the mechanical strength of the electrode was improved and the excellent cycling and rate properties were obtained under the condition that the carbon nanotube was introduced less than 0. 01 wt%. In the aspect of collecting fluid, a kind of flexible and light ultrathin carbon nanotube thin film was prepared by using cross supercis carbon nanotube film. Compared with the metal foil, the carbon nanotube membrane not only has a very small mass and volume, but also has a better performance of the electrode / fluid collector interface, improves the specific capacity of the battery, and achieves a remarkable increase in the energy density. At the same time, because of the strong interaction between tubes, the supercis carbon nanotubes avoid the problems of the large thickness and the large amount of carbon nanotubes introduced in the literature. In addition, in order to solve the problem of low intrinsic conductivity of supercis carbon nanotube film, the surface resistance of carbon nanotube film is further reduced by the method of metal evaporation, while keeping the mass and volume of collecting fluid very small. The performance of the battery under the condition of high current operation is improved, and the carbon nanotube film can meet the requirements of the electrode of the large capacity lithium battery such as cylindrical battery. A novel electrode structure based on supercis carbon nanotube film is designed, which enables carbon nanotubes to act as a conductive agent, a binder and a fluid collector at the same time. The specific gravity of active substances in the electrode is increased to more than 95 wt%. At the same time, the electrode reaction kinetics was improved by using the excellent electrical and mechanical properties of carbon nanotubes and the unique porous structure of the cross-carbon nanotubes film. In addition, based on the new electrode structure, a kind of flexible thin film whole cell is fabricated, which can achieve high area specific capacity.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TM912;TB383.1
【相似文獻】
相關(guān)期刊論文 前10條
1 尹艷紅;吳子平;羊建高;黎業(yè)生;陳一勝;王智祥;;碳納米管薄膜的制備及其性能的研究[J];有色金屬科學(xué)與工程;2012年03期
2 李貝;;碳納米管薄膜的制備及引用研究[J];科技風(fēng);2013年04期
3 趙艷珩;曾葆青;趙約瑟;張文鋒;田浩希;;定向碳納米管薄膜的制備[J];材料導(dǎo)報;2006年S1期
4 張云懷;肖鵬;王新強;白玉峰;賀健;;多壁碳納米管薄膜離子敏特性的研究[J];材料導(dǎo)報;2006年S1期
5 ;科學(xué)家發(fā)現(xiàn)碳納米管薄膜新特性[J];大眾科技;2008年05期
6 羅晶晶;;可復(fù)制肌肉的碳納米管薄膜[J];技術(shù)與市場;2008年06期
7 朱清鋒;張海燕;陳易明;陳雨婷;陳列春;楊大勇;;熱絲和射頻等離子體化學(xué)氣相沉積法制備定向碳納米管薄膜[J];光學(xué)學(xué)報;2008年09期
8 王小冬;王六定;席彩萍;李昭寧;趙景輝;;催化劑膜厚對碳納米管薄膜生長的影響[J];人工晶體學(xué)報;2011年02期
9 劉行;熊智淳;陳yN東;張巍巍;潘麗坤;孫卓;;碳納米管薄膜對重金屬離子吸附的研究及應(yīng)用[J];大連理工大學(xué)學(xué)報;2011年S1期
10 李剛;;碳納米管薄膜的制備及其超疏水性研究[J];潤滑與密封;2012年01期
相關(guān)會議論文 前10條
1 曹安源;;碳納米管薄膜的光伏應(yīng)用[A];2011中國材料研討會論文摘要集[C];2011年
2 曾凡光;麻華麗;李昕;劉衛(wèi)華;夏連勝;張銳;;鎳緩沖層對碳納米管薄膜強流脈沖發(fā)射特性的影響[A];中國真空學(xué)會2012學(xué)術(shù)年會論文摘要集[C];2012年
3 賈蘭;吳宇;楊飛亞;饒云江;;碳納米管薄膜微納光纖氣體傳感特性實驗研究[A];全國第15次光纖通信暨第16屆集成光學(xué)學(xué)術(shù)會議論文集[C];2011年
4 趙建文;高育龍;顧唯兵;林劍;陳征;崔錚;;全印刷柔性碳納米管薄膜晶體管器件構(gòu)建及電性能研究[A];中國化學(xué)會第28屆學(xué)術(shù)年會第4分會場摘要集[C];2012年
5 田時開;曾葆青;殷吉昊;楊中海;;碳納米管薄膜的制備及其場發(fā)射特性的研究[A];中國電子學(xué)會真空電子學(xué)分會——第十四屆年會論文集[C];2004年
6 邸江濤;李清文;;順排碳納米管薄膜異質(zhì)結(jié)太陽能電池[A];中國化學(xué)會第28屆學(xué)術(shù)年會第4分會場摘要集[C];2012年
7 孫建平 ;劉惟敏 ;劉云圻 ;薛增泉;;多壁碳納米管薄膜摻鉀后場發(fā)射特性研究[A];TFC’03全國薄膜技術(shù)學(xué)術(shù)研討會論文摘要集[C];2003年
8 姜開利;;超順排碳納米管薄膜揚聲器[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
9 張政軍;;碳納米管薄膜的多維定向生長[A];TFC’03全國薄膜技術(shù)學(xué)術(shù)研討會論文摘要集[C];2003年
10 趙建文;劉振;徐文亞;錢龍;崔錚;;印刷柔性碳納米管薄膜晶體管和簡單邏輯電路構(gòu)建及電性能研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第30分會:低維碳材料[C];2014年
相關(guān)重要報紙文章 前2條
1 馮衛(wèi)東;科學(xué)家發(fā)現(xiàn)碳納米管薄膜新特性[N];科技日報;2008年
2 本報記者 李仲勛 黃偉;一粒“米”,帶來多重驚喜[N];新華日報;2011年
相關(guān)博士學(xué)位論文 前7條
1 李Pr;新型碳納米材料微波特性實驗與應(yīng)用研究[D];中國科學(xué)技術(shù)大學(xué);2015年
2 王珂;碳納米管薄膜在鋰離子電池中的應(yīng)用研究[D];清華大學(xué);2015年
3 劉力濤;碳納米管薄膜氣敏元件的制備及敏感性研究[D];清華大學(xué);2010年
4 李剛;定向碳納米管薄膜的熱化學(xué)氣相沉積法制備及其血液相容性研究[D];江蘇大學(xué);2009年
5 童立紅;基于碳納米管薄膜熱聲光聲特性及蜃景效應(yīng)的理論研究和數(shù)值分析[D];中國科學(xué)技術(shù)大學(xué);2015年
6 陳婷;碳納米管薄膜的制備及其場發(fā)射性能研究[D];華東師范大學(xué);2007年
7 林成;基于碳納米管薄膜修飾微懸臂梁的紅外光熱光譜探測系統(tǒng)研究[D];重慶大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 高陽;碳納米管薄膜電容特性及其在水處理中的應(yīng)用[D];華東師范大學(xué);2008年
2 馮春林;碳納米管薄膜傳感器的制備及其傳感特性研究[D];沈陽航空航天大學(xué);2015年
3 王凱;基于碳納米管薄膜的傳感器件制備及其氣體敏感特性研究[D];中國石油大學(xué)(華東);2013年
4 張衍;網(wǎng)絡(luò)狀碳納米管薄膜應(yīng)變傳感機理研究[D];上海交通大學(xué);2010年
5 錢宏量;藍寶石紅外窗口電磁屏蔽用碳納米管薄膜的制備研究[D];哈爾濱工業(yè)大學(xué);2014年
6 饒早英;碳納米管薄膜場發(fā)射電流的研究[D];重慶大學(xué);2008年
7 杜招紅;鋁基定向碳納米管薄膜的制備及應(yīng)用[D];南昌大學(xué);2008年
8 郭敏;碳納米管薄膜的浸漬-吸附方法制備[D];天津大學(xué);2009年
9 方建放;碳納米管薄膜場致發(fā)射性能研究[D];東華大學(xué);2010年
10 譚曉琳;有機碳納米管薄膜的制備及應(yīng)用的研究[D];北京交通大學(xué);2014年
,本文編號:2279000
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2279000.html