天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 材料論文 >

碳納米管和石墨烯增強AZ31鎂基復合材料的組織和性能研究

發(fā)布時間:2018-10-10 07:11
【摘要】:采用粉末冶金法結(jié)合熱擠壓制備了不同含量的碳納米管(Carbon nanotubes,CNTs)、石墨烯(Graphene nanoplates,GNPs)及兩者混雜增強AZ31鎂基復合材料。利用光學顯微鏡、X射線衍射、能譜分析和掃描電子顯微鏡等對復合材料進行表征。研究了 CNTs、GNPs加入含量對顯微組織、致密度、力學性能、導電性能和摩擦性能的影響;考察了過程控制劑含量對球磨結(jié)果的影響;為了進一步發(fā)揮增強體的效果,探索了不同混雜比例CNTs/GNPs增強體對復合材料組織和性能的影響;進行了復合材料的等徑角擠壓試驗。主要結(jié)果如下:當過程控制劑硬脂酸的含量為0.3wt.%時,球磨后粉末顆粒最均勻,擠壓后材料的抗壓強度、硬度、致密度和導電性能最高。隨著CNTs含量的增加,復合材料的晶粒尺寸先減小后增大、強度先升高后降低、延伸率和導電率逐漸降低、抗摩擦性能逐漸提高。當CNTs的含量為1wt.%時,晶粒尺寸比基體合金降低19%;其強度稍有升高;硬度和斷裂應(yīng)變比基體提高10%和13%;當摩擦中的法向載荷為50N時,摩擦系數(shù)和磨損量分別降低15%和39%。GNPs的含量越高,復合材料的抗拉強度、顯微硬度和抗摩擦性能也越高、延伸率、密度和導電率越低。當GNPs的含量為0.5wt.%,擠壓方向的晶粒尺寸比基體降低12%;抗拉強度、延伸率、抗壓強度、硬度分別為269MPa,13.8%,480MPa和83.5HV;當法向載荷為50N時,摩擦系數(shù)和磨損量分別降低9%和25%。CNTs/GNPs混雜增強比單一增強的綜合力學性能好。尤其當混雜比例為1:1(CNTs和GNPs的含量分別為0.5wt.%)時,復合材料表現(xiàn)出優(yōu)異的協(xié)同效應(yīng)。該復合材料的晶粒均勻細小;抗拉強度、硬度和延伸率最高,分別為315MPa、88.7HV和18.5%,比基體合金提升了 11%、9%和28%;導電率為基體的75%;當法向載荷為50N時,復合材料的摩擦系數(shù)和磨損量降低了 10%和27%。ECAP變形一道次后,組織明顯細化,屈服強度和抗壓強度有較明顯提升、塑性保持不變;祀s比例為1:1(CNTs和GNPs的含量分別為0.5wt.%)復合材料的屈服強度和抗壓強度分別為247MPa和507MPa,比擠壓態(tài)提升了 14%和9%,比擠壓態(tài)基體合金提升了 14%和12%。
[Abstract]:Carbon nanotubes (Carbon nanotubes,CNTs), graphene (Graphene nanoplates,GNPs) and mixed AZ31 magnesium matrix composites were prepared by powder metallurgy and hot extrusion. The composite was characterized by X-ray diffraction, energy spectrum analysis and scanning electron microscope. The effects of the content of CNTs,GNPs on microstructure, density, mechanical properties, electrical conductivity and friction properties were studied. The effect of process control agent content on the results of ball milling was investigated. The effects of CNTs/GNPs reinforcements with different hybrid ratios on the microstructure and properties of the composites were investigated, and the equal path angular extrusion tests were carried out. The main results are as follows: when the content of stearic acid is 0.3 wt.%, the powder particle is the most uniform after ball milling, and the compressive strength, hardness, density and electrical conductivity of the extruded material are the highest. With the increase of CNTs content, the grain size of the composites decreases first and then increases, the strength increases first and then decreases, the elongation and conductivity decrease gradually, and the friction resistance increases gradually. When the content of CNTs is 1 wt.%, the grain size is 19% lower than that of the base alloy, the strength is slightly higher, the hardness and fracture strain are 10% and 13% higher than that of the matrix, and when the normal load in friction is 50 N, The higher the content of 39%.GNPs and friction coefficient, the higher the tensile strength, microhardness and friction resistance of the composites, and the lower the elongation, density and conductivity of the composites. When the content of GNPs is 0.5 wt., the grain size in the extrusion direction is 12% lower than that of the matrix, and the tensile strength, elongation, compressive strength and hardness are 269mpa, 13.8MPa and 83.5HVrespectively, and when the normal load is 50N, the tensile strength, elongation, compressive strength and hardness are respectively 480MPa and 83.5HV. The friction coefficient and wear rate were reduced by 9% and 25%.CNTs/GNPs respectively. Especially when the hybrid ratio is 1:1 (the content of CNTs and GNPs is 0.5 wt.%), the composite shows excellent synergistic effect. The composite has the highest tensile strength, hardness and elongation, which are 315MPA, 88.7HV and 18.5, which are 11.9% and 28% higher than the matrix alloy, the conductivity of which is 75%, and when the normal load is 50N, the composite has the highest tensile strength, hardness and elongation of the composite, and the tensile strength, hardness and elongation of the composite are the highest (315MPA, 88.7HV and 18.5HV, respectively). When the friction coefficient and wear capacity of the composites are reduced by 10% and 27%.ECAP deformation, the microstructure is refined, the yield strength and compressive strength are obviously increased, and the plasticity remains unchanged. The yield strength and compressive strength of the composite at 1:1 (CNTs and GNPs = 0.5wt.%) are 247MPa and 507MPA, respectively, which are 14% and 9% higher than those of extruded state and 14% and 12% higher than that of extruded matrix alloy.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB333

【參考文獻】

相關(guān)期刊論文 前8條

1 Muhammad Rashad;Fusheng Pan;Muhammad Asif;Li Li;;Enhanced ductility of Mg 3Al 1Zn alloy reinforced with short length multiwalled carbon nanotubes using a powder metallurgy method[J];Progress in Natural Science:Materials International;2015年04期

2 徐衛(wèi)平;李蒙江;柯黎明;邢麗;;高體積分數(shù)MWCNTs/AZ80復合材料的顯微組織[J];中國有色金屬學報;2015年07期

3 李婷婷;馬文亮;王蕓;宮海蘭;龔思銘;張巍;俞程洋;王辛;;超細晶粒鎂合金材料制備技術(shù)的研究進展[J];機械工程師;2015年01期

4 路君;靳麗;董杰;曾小勤;丁文江;姚真裔;;等通道角擠壓變形AZ31鎂合金的變形行為[J];中國有色金屬學報;2009年03期

5 楊明波;潘復生;李忠盛;張靜;;Mg-Al系耐熱鎂合金中的合金元素及其作用[J];材料導報;2005年04期

6 李四年,宋守志,余天慶,陳慧敏,鄭重;復合鑄造法制備納米碳管增強鎂基復合材料的研究[J];中國機械工程;2005年03期

7 王渠東 ,丁文江;鎂合金研究開發(fā)現(xiàn)狀與展望[J];世界有色金屬;2004年07期

8 王鴻華,李賢淦,費鑄銘;石墨纖維增強鎂基復合材料的線膨脹性能研究[J];宇航材料工藝;1995年01期



本文編號:2261112

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2261112.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶25cb9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com