天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

ZnS基納米復(fù)合材料的制備及光催化性能研究

發(fā)布時(shí)間:2018-09-12 13:44
【摘要】:半導(dǎo)體光催化劑因環(huán)保節(jié)能等優(yōu)點(diǎn)在環(huán)境治理,特別是在水體有機(jī)污染物降解方面發(fā)揮了巨大的作用。在眾多半導(dǎo)體光催化劑中,ZnS因具有優(yōu)異的性能備受人們的關(guān)注。但ZnS半導(dǎo)體材料因具有較寬的禁帶,只對紫外光有響應(yīng),致使ZnS對太陽光的利用率較低。近年來,通過摻雜或復(fù)合來提高半導(dǎo)體光催化劑對污染物的降解效率已成為催化領(lǐng)域研究的熱點(diǎn)之一。在本文中,我們以硫化物半導(dǎo)體材料為主體進(jìn)行研究,采用水熱法、高溫煅燒、離子交換等方法,結(jié)合材料本身的容度積等物理化學(xué)性質(zhì),制備了CdS/ZnS納米片,Co、Mn共摻雜ZnS納米球,ZnO/CdS/ZnS納米球等納米復(fù)合材料,并對制備的產(chǎn)物進(jìn)行光催化活性研究。主要包括以下3個(gè)方面:(1) CdS/ZnS納米片的制備及光催化活性研究:通過水熱法制備ZnS(en)0.5前驅(qū)體,以ZnS(en)0.5前驅(qū)體和氯化鎘為原料,利用離子交換法和水熱法成功制備了CdS/ZnS納米片。利用SEM、XRD、XPS、UV-Vis、TEM等對樣品的組成、結(jié)構(gòu)及形貌進(jìn)行表征。XRD結(jié)果表明,隨著鎘摻雜量的增加,CdS/ZnS納米片的衍射峰依次向小角度方向移動(dòng),說明我們所制備的樣品是ZnS和CdS的復(fù)合材料,而不是ZnS和CdS的物理混合;從SEM圖像可清楚的觀察到ZnS(en)0.5前驅(qū)體和CdS/ZnS納米片是由厚度均勻的納米片組成。之后,以CdS/ZnS納米片為光催化劑,甲基橙為模擬污染物進(jìn)行光催化降解實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,當(dāng)Cd/Zn的摩爾比等于0.8時(shí)(即CZ0.8),片狀CdS/ZnS納米復(fù)合材料具有最好的催化活性,將10mg樣品CZ0.8加入到50ml甲基橙水溶液(濃度為10mg/L)中,在可見光下照射60min,甲基橙溶液的降解率為99%。(2) Co、Mn共摻雜ZnS納米球的制備及光催化活性研究:首先利用水熱法制備Mn摻雜ZnS納米球,然后通過離子交換法摻雜第三種金屬離子Co,制備Co、Mn共摻雜ZnS納米球復(fù)合材料。利用XRD、UV-Vis及SEM等對所得樣品進(jìn)行表征。SEM圖表明樣品是由許多直徑在400nm左右的球形顆粒組成。之后,分別以ZnS,Co摻雜ZnS, Mn摻雜ZnS和Co、Mn共摻雜ZnS納米球?yàn)楣獯呋瘎?甲基橙水溶液為模擬污染物,進(jìn)行光催化降解實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果證明,Co、Mn共摻雜ZnS納米球具有最好的催化活性,當(dāng)向50ml甲基橙水溶液(濃度為3mg/L)中加入20mmg此催化劑,可見光照射下,90min的降解率為96.7%。(3) ZnO/CdS/ZnS納米球的制備及光催化活性研究:通過水熱法制備ZnS納米球,以ZnS為基礎(chǔ),分別利用高溫煅燒、離子交換等方法制備CdS/ZnS納米球、ZnO/CdS/ZnS納米球。利用SEM、XRD、XPS、UV-Vis等對其組成、形貌和性能進(jìn)行表征。SEM圖顯示樣品ZnO/CdS/ZnS是由許多粒徑均一、表面粗糙的納米球組成。之后以甲基橙為模擬污染物,對四種樣品的光催化性能進(jìn)行研究。結(jié)果表明,ZnO/CdS/ZnS納米球具有最好的催化活性,將20mg ZnO/CdS/ZnS納米球分散到50ml 10mg/L的甲基橙溶液中,可見光照射下,60min的降解率為96.8%。
[Abstract]:Semiconductor photocatalysts play an important role in environmental control, especially in the degradation of organic pollutants in water because of the advantages of environmental protection and energy saving. Among many semiconductor photocatalysts, ZnS has attracted much attention because of its excellent properties. However, the ZnS semiconductor material has a wide band gap and only responds to ultraviolet light, which results in a low utilization rate of solar light for ZnS. In recent years, improving the degradation efficiency of semiconductor photocatalyst by doping or recombination has become one of the hot spots in the field of catalysis. In this paper, we take sulfide semiconductor materials as the main body of research, adopt hydrothermal method, high temperature calcination, ion exchange and other physical and chemical properties, such as volume product of materials, etc. Co-doped CdS/ZnS nanospheres, ZnS nanospheres and ZnS / ZnS nanospheres were prepared and their photocatalytic activity was studied. The main contents are as follows: (1) the preparation and photocatalytic activity of CdS/ZnS nanoparticles: ZnS (en) 0.5 precursors were prepared by hydrothermal method, and CdS/ZnS nanoparticles were successfully prepared by ion exchange method and hydrothermal method using ZnS (en) 0.5 precursor and cadmium chloride as raw materials. SEM,XRD,XPS,UV-Vis,TEM was used to characterize the composition, structure and morphology of the samples. The results showed that the diffraction peaks of CDs / ZnS nanocrystals shifted to small angles with the increase of CD doping content, indicating that the samples we prepared were composites of ZnS and CdS. Instead of the physical mixing of ZnS and CdS, it can be clearly observed from the SEM images that the ZnS (en) 0.5 precursor and CdS/ZnS nanocrystals are composed of uniform thickness nanocrystals. After that, the photocatalytic degradation of methyl orange was carried out using CdS/ZnS nanoparticles as photocatalyst and methyl orange as simulated pollutant. The experimental results show that when the molar ratio of Cd/Zn is equal to 0.8 (that is, CZ0.8), the flake CdS/ZnS nanocomposites have the best catalytic activity. The 10mg sample CZ0.8 is added to the 50ml methyl orange aqueous solution (the concentration is 10mg/L). Under visible light irradiation for 60 min, the degradation rate of methyl orange solution was 99%. (2) preparation and photocatalytic activity of Co,Mn co-doped ZnS nanospheres: firstly, Mn doped ZnS nanospheres were prepared by hydrothermal method. Then Co,Mn co-doped ZnS nanospheres were prepared by doping a third metal ion Co, by ion exchange method. XRD,UV-Vis and SEM were used to characterize the samples. The results showed that the samples were made up of many spherical particles about the diameter of 400nm. Then the photocatalytic degradation experiments were carried out using ZnS and Co,Mn co-doped ZnS nanospheres doped with ZnS,Co and ZnS, Mn as photocatalysts and methyl orange aqueous solution as simulated pollutants respectively. The experimental results show that the codoped ZnS nanospheres have the best catalytic activity. 20mmg is added to the 50ml methyl orange aqueous solution (concentration of 3mg/L). (3) preparation and photocatalytic activity of ZnO/CdS/ZnS nanospheres: ZnS nanospheres were prepared by hydrothermal method. Based on ZnS, CdS/ZnS nanospheres were prepared by high temperature calcination and ion exchange respectively. SEM,XRD,XPS,UV-Vis was used to characterize its composition, morphology and properties. The results showed that the ZnO/CdS/ZnS was composed of many nanospheres with uniform particle size and rough surface. The photocatalytic properties of four kinds of samples were studied with methyl orange as the simulated pollutant. The results show that ZnO / CDs / ZnS nanospheres have the best catalytic activity. When 20mg ZnO/CdS/ZnS nanospheres are dispersed into 50ml 10mg/L methyl orange solution, the degradation rate of 50ml 10mg/L nanospheres is 96.8g under visible light irradiation for 60min.
【學(xué)位授予單位】:河南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB33;O643.36

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李雪蓮;張志東;王紅艷;熊祖洪;張中月;;應(yīng)用平行隔板增強(qiáng)納米球表面電場[J];物理學(xué)報(bào);2011年04期

2 曹星星;張學(xué)斌;朱雅君;冀翼;劉莎莎;邵浩;鳳儀;;中空納米球的制備和應(yīng)用[J];廣州化工;2012年11期

3 蘇東坡;唐元洪;林良武;楊雷;;氨基酸輔助制備二氧化硅納米球及其應(yīng)用[J];材料導(dǎo)報(bào);2012年23期

4 王成永,王姝婧;槲皮素納米球的制劑學(xué)研究[J];中國藥學(xué)雜志;2005年14期

5 張萍;馮年平;武培怡;;聚合物空心納米球及其在藥學(xué)領(lǐng)域的應(yīng)用[J];藥學(xué)進(jìn)展;2006年08期

6 裴立宅;;原料對硅氧化物納米球形成的影響[J];稀有金屬與硬質(zhì)合金;2008年04期

7 許婧;許時(shí)嬰;;納米球/微球包埋維生素A和維生素E[J];食品工業(yè)科技;2008年05期

8 郭慶中;周書祥;伍雙全;喻湘華;;氟烷基改性的二氧化硅納米球的制備與應(yīng)用研究[J];有機(jī)硅材料;2009年04期

9 王丹丹;吳韜;;鉻摻雜二氧化硅納米球的鉻輔助合成和尺寸控制(英文)[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期

10 郁軍;許并社;;單分散鎳碳復(fù)合納米球和碳微球的制備[J];功能材料;2009年09期

相關(guān)會議論文 前10條

1 齊國斌;楊梅竹;黃娟;薛亞楠;喻發(fā)全;;尺寸可控的海藻酸鈉/阿霉素復(fù)合納米球的制備與表征[A];2012年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(上冊)[C];2012年

2 胡成龍;陳韶云;陳旭東;張衛(wèi)紅;陳建;;聚苯胺納米球/納米棒生長過程中的拉曼光譜研究[A];第十七屆全國光散射學(xué)術(shù)會議摘要文集[C];2013年

3 龐晉麗;李艷敬;周國偉;;微乳液模板制備徑向介孔孔道結(jié)構(gòu)的二氧化硅納米球[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第27分會:多孔功能材料[C];2014年

4 王帥;張寧;葛小鵬;萬瑛博;李曉虹;嚴(yán)禮;夏怡君;宋波;;多組分反應(yīng)制備規(guī)整偶氮苯聚合物:光致形變性能的超分子納米球[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第08分會:高分子科學(xué)[C];2014年

5 程軻;王書杰;程剛;蔣曉紅;杜祖亮;;利用納米球模板技術(shù)組裝周期性排列的空心金球[A];中國化學(xué)會第26屆學(xué)術(shù)年會超分子組裝與軟物質(zhì)材料分會場論文集[C];2008年

6 耿,

本文編號:2239180


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2239180.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a8b41***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com