天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

鈣鈦礦鐵電氧化物單晶納米結(jié)構(gòu)的表面、界面及性能研究

發(fā)布時(shí)間:2018-09-12 08:12
【摘要】:鈣鈦礦相鐵電單晶納米結(jié)構(gòu)因其獨(dú)特的物理化學(xué)性質(zhì)及鐵電表面化學(xué),在高密度存儲(chǔ)、能量轉(zhuǎn)換及催化等領(lǐng)域有著潛在應(yīng)用,并逐步成為功能材料領(lǐng)域的研究熱點(diǎn)之一。開(kāi)展鈣鈦礦相鐵電氧化物單晶納米結(jié)構(gòu)的可控制備、表面與界面的調(diào)控及性能研究具有重要的理論意義和科學(xué)價(jià)值。本論文首先簡(jiǎn)要概述了鈣鈦礦鐵電氧化物的結(jié)構(gòu)特點(diǎn),重點(diǎn)總結(jié)和分析了鈣鈦礦鐵電氧化物的結(jié)構(gòu)特點(diǎn)、自發(fā)極化以及屏蔽帶來(lái)的鐵電表面化學(xué)、鈣鈦礦相PbTi03(PTO)納米結(jié)構(gòu)的單疇穩(wěn)定性及其表面、界面的化學(xué)性質(zhì);探討了鐵電氧化物納米結(jié)構(gòu)的制備及研究現(xiàn)狀。特別針對(duì)鈣鈦礦鐵電納米晶的規(guī)則刻面、鐵電表面化學(xué)、鐵電極化對(duì)氣體吸附、貴金屬生長(zhǎng)和催化性能的影響等問(wèn)題進(jìn)行了詳細(xì)的論述和總結(jié)。在此基礎(chǔ)上,本文采用水熱法和固相反應(yīng)法,分別制備了具有規(guī)則幾何外形的鈣鈦礦相PTO多面體納米結(jié)構(gòu)、STO/PTO納米復(fù)合結(jié)構(gòu)。系統(tǒng)研究了這些鈣鈦礦鐵電氧化物納米材料的微結(jié)構(gòu),表面化學(xué)狀態(tài)、暴露晶面的穩(wěn)定性和光催化性能,以及PTO極化面對(duì)貴金屬單晶納米晶沉積生長(zhǎng)及其CO催化氧化的影響規(guī)律、對(duì)STO單晶納米結(jié)構(gòu)生長(zhǎng)以及STO/PTO界面鐵磁性的影響規(guī)律,提出了非磁性鈣鈦礦氧化物界面鐵磁性產(chǎn)生的極化調(diào)節(jié)機(jī)制。本論文主要研究?jī)?nèi)容和結(jié)果如下:(1)采用無(wú)機(jī)鹽離子輔助水熱法,首次成功制備了具有規(guī)則刻面且表面光滑的八面體形貌的鈣鈦礦相PTO單晶納米晶(PT OCT),顆粒尺寸為50-100 nm,暴露晶面為{111}晶面,其居里溫度為485.56℃。HAADF-STEM和STEM-EELS結(jié)果表明,在PT OCT單晶納米晶的表面層~2 nm處存在Li+富集,而在納米晶內(nèi)部未探測(cè)出Li+的分布。Li與0結(jié)合形成了Li-O鍵,且Li-O鍵的存在是PT OCT單晶納米晶{111}晶面穩(wěn)定的重要因素。(2)研究發(fā)現(xiàn)PT OCT單晶納米晶的生長(zhǎng)為取向聚集生長(zhǎng)方式(OA)機(jī)制,即:在水熱反應(yīng)初期,反應(yīng)中形成四方鈣鈦礦結(jié)構(gòu)的PT納米顆粒,尺寸約為2-4 nm,納米粒子在靜電力、Li+作用以及范德瓦爾斯力共同作用下逐漸聚集在一起,并在生長(zhǎng)過(guò)程中,顆粒之間不斷調(diào)整晶粒取向以達(dá)到表面能的降低,最終形成了八面體形貌的PT單晶納米晶。在這一生長(zhǎng)過(guò)程中,當(dāng)八面體形貌基本形成后,Li+通過(guò)擴(kuò)散作用逐漸從八面體內(nèi)部遷移到表面,最后在晶體表面聚集,起到穩(wěn)定PT OCT{111}晶面的作用。(3)可見(jiàn)光光催化研究表明,PT OCT單晶納米晶是一種性能優(yōu)異的光催化劑,60 min左右即可完全降解濃度為10-5M的亞甲基藍(lán)水溶液(MB)水溶液,其一級(jí)反應(yīng)速率常數(shù)達(dá)0.042 min-1,是相同反應(yīng)條件下同類鈣鈦礦氧化物可見(jiàn)光催化效率的10倍。UV吸收光譜研究表明,PTOCT單晶納米晶的禁帶寬度由塊體的2.8~3.0 eV下降到2.58 eV(480 nm),同時(shí)在500~700 nm范圍內(nèi)的可見(jiàn)光吸收整體增強(qiáng);另一方面,低溫電子順磁共振譜(ESR)研究表明PT OCT單晶納米晶中Ti3+的出現(xiàn)有可能導(dǎo)致了能帶結(jié)構(gòu)內(nèi)形成局域態(tài),降低了PT OCT納米晶的帶隙,增強(qiáng)了可見(jiàn)光波段的吸收,使得PT OCT單晶納米晶具有高效的可見(jiàn)光催化性能。(4)采用固相反應(yīng)法首次成功制備了尺寸均一、分散性良好鈣鈦礦相PTO截角八面體納米晶,研究表明,Pb304局部熔化,為PTO納米晶的均勻成核-生長(zhǎng)提供了類似于溶液中的液相環(huán)境。HAADF-STEM和Tomography分析結(jié)果表明,所制備的鈣鈦礦相PTO單晶納米顆粒尺寸為50-100nm,具有規(guī)則的晶面,呈截角八面體形貌,主要暴露面為{111}和{01l},存在少量的{100}晶面。(5)以PTO截角八面體納米晶為載體,通過(guò)濕化學(xué)法氧化-還原反應(yīng)成功制備了負(fù)載Pt納米晶的Pt-PTO納米復(fù)合結(jié)構(gòu)。微結(jié)構(gòu)研究表明,尺寸為3-5 nm的單晶Pt納米晶選擇性地生長(zhǎng)在鈣鈦礦PTO納米顆粒的{111)面上,單晶Pt納米晶的分散性良好,尺寸均一。CO催化氧化實(shí)驗(yàn)表明,以Pt-PTO納米晶作為催化劑,CO轉(zhuǎn)化為CO2的起始溫度為30℃,至50℃左右時(shí),CO的轉(zhuǎn)化率達(dá)到了100%。(6)為研究Pt-PTO系統(tǒng)的CO催化的動(dòng)力學(xué),采用濕化學(xué)法,分別在鈣鈦礦相PTO截角八面體單晶納米顆粒(主要暴露面為{111}面)、PTO納米纖維(暴露面為{100}或{010}晶面)及PTO納米片(暴露面為{001}晶面)上成功負(fù)載了Pt單晶納米晶,獲得了三種Pt-PTO納米復(fù)合材料。研究表明,負(fù)載的Pt顆粒在{111}、{100}和{001}面上的尺寸逐漸增大,分散性逐漸降低,由3-5 nm,5-20 nm到100nm左右的團(tuán)聚;在未負(fù)載Pt時(shí),PTO截角八面體單晶納米顆粒、PTO納米纖維和PTO納米片在250℃時(shí)的CO催化氧化反應(yīng)的轉(zhuǎn)化率分別為60%、5%和85%,其中PTO納米片對(duì)CO的轉(zhuǎn)化效率最高,PTO納米纖維對(duì)CO的轉(zhuǎn)化效率最低。此時(shí),CO催化氧化反應(yīng)的中心為PTO納米結(jié)構(gòu)本身,鈣鈦礦PTO納米結(jié)構(gòu)暴露面的極性將對(duì)CO和O2的吸附-脫附平衡及反應(yīng)速率控制步驟起主導(dǎo)作用,PTO暴露面的極性越強(qiáng),將越有利于催化氧化反應(yīng)的勢(shì)壘降低,從而催化性能越高。(7)在負(fù)載Pt之后,Pt-PTO截角八面體納米顆粒、Pt-PTO納米纖維以及Pt-PTO納米片復(fù)合結(jié)構(gòu)的100%的CO轉(zhuǎn)化率溫度分別為50℃,100℃和100℃。三種體系的表觀活化能(Ea)分別為22.9(±0.4) kcal mol-1,32.7(±2.9) kcal mol-1,26.5(±1.6) kcal mol-1。Pt-PTO納米復(fù)合結(jié)構(gòu)作催化劑時(shí),CO的催化氧化反應(yīng)中心是Pt納米晶,其微結(jié)構(gòu)和表面化學(xué)狀態(tài)決定了CO催化反應(yīng)的動(dòng)力學(xué)。Pt納米晶在PTO截角八面體納米顆粒上單分散生長(zhǎng),尺寸較小(約為3-5 nm),結(jié)晶性良好。而Pt納米晶在PTO納米纖維和納米片上是嚴(yán)重聚集的形式生長(zhǎng)成大尺寸團(tuán)簇狀(10nm),其表面活性位點(diǎn)比例比PTO納米顆粒上的Pt少。(8)以單晶單疇的鈣鈦礦相PTO納米片為載體,采用水熱法首次成功制備了鈣鈦礦相SrTiO3(STO)/PTO單晶納米復(fù)合結(jié)構(gòu)。TEM和Cs-STEM研究表明,STO選擇性生長(zhǎng)在PTO納米片四個(gè)側(cè)邊非極化面和{001}正極化面上,形成核-殼結(jié)構(gòu)的包裹層。STO/PTO具有原子級(jí)分辨率的界面,在界面處,Pb和Sr均沒(méi)有發(fā)生互擴(kuò)散,界面清晰。STO在PTO納米片的極化面和非極化面均為外延生長(zhǎng),且在側(cè)面生長(zhǎng)時(shí)表現(xiàn)出拓?fù)湫再|(zhì),厚度約為15-20 nm。當(dāng)STO單晶薄膜外延生長(zhǎng)在PTO納米片的{001)晶面的正極化面方向時(shí),形成的界面厚度約為1-2個(gè)單胞尺寸(~1 nm),當(dāng)STO在側(cè)邊的非極化面生長(zhǎng)時(shí),界面厚度僅為1個(gè)單胞尺寸(~0.4 nm)。(9)STO/PTO納米復(fù)合材料具有明顯的室溫鐵磁性,隨著溫度從300 K降低到5 K,其飽和磁化強(qiáng)度Ms由2.5×10-3emu/g增加到2.5×10-2emu/g,對(duì)應(yīng)的矯頑場(chǎng)Hc從138 Oe增加至375 Oe;在300 K、150 K和100 K條件下,當(dāng)磁場(chǎng)強(qiáng)度大于5000 Oe以后,典型的鐵磁性磁化曲線消失,取而代之的是一段磁化強(qiáng)度M近似為零的過(guò)渡區(qū)域;磁場(chǎng)范圍約為2500 Oe,進(jìn)一步增大磁場(chǎng),磁化曲線在此發(fā)生突變轉(zhuǎn)折,對(duì)應(yīng)的M由零轉(zhuǎn)變?yōu)樨?fù)值,之后材料表現(xiàn)為抗磁性;當(dāng)磁場(chǎng)逐步降低時(shí),又經(jīng)過(guò)類似的過(guò)程轉(zhuǎn)變?yōu)殍F磁性,兩個(gè)磁轉(zhuǎn)變過(guò)程都是可逆的。隨著溫度的降低,這一磁轉(zhuǎn)變所需的臨界磁場(chǎng)強(qiáng)度也隨之大幅提高。HAADF-STEM和STEM-EELS的結(jié)構(gòu)分析以及第一性原理計(jì)算的結(jié)果表明,STO/PTO納米復(fù)合材料的鐵磁性與正極化面界面處出現(xiàn)的大量Ti3+密切相關(guān),這一結(jié)果使得STO/PTO復(fù)合材料成為新型鐵電-鐵磁共存的多鐵系統(tǒng)。
[Abstract]:Perovskite ferroelectric single crystal nanostructures have potential applications in the fields of high density storage, energy conversion and catalysis due to their unique physical and chemical properties and ferroelectric surface chemistry. It is of great theoretical and scientific significance to study the regulation and properties of Perovskite Ferroelectric oxides. Firstly, the structural characteristics of Perovskite Ferroelectric oxides are briefly summarized. The structural characteristics of Perovskite Ferroelectric oxides, the ferroelectric surface chemistry caused by spontaneous polarization and shielding, and the single domain stability of perovskite phase PbTi03 (PTO) nanostructures are summarized and analyzed. The preparation and research status of ferroelectric oxide nanostructures are discussed. Especially, the regular facets of Perovskite Ferroelectric nanocrystals, ferroelectric surface chemistry, the influence of iron electrode on gas adsorption, noble metal growth and catalytic performance are discussed and summarized in detail. In this paper, perovskite PTO polyhedron nanostructures and STO/PTO nanocomposites with regular geometry shapes were prepared by hydrothermal method and solid state reaction method, respectively. The main contents and results of this dissertation are as follows: (1) Inorganic salt ions are used in the preparation of non-magnetic perovskite oxides. Perovskite PTO single crystal nanocrystals (PT OCT) with regular facets and smooth octahedral morphology were successfully prepared by assisted hydrothermal method for the first time. The size of PT OCT nanocrystals was 50-100 nm, and the exposed surface was {111} crystal plane. The Curie temperature was 485.56 C. The results of HAADF-STEM and STEM-EELS showed that there was Li in the surface layer of PT OCT single crystal nanocrystals ~2 nm. Li-O bond was formed by the combination of Li and 0, and the existence of Li-O bond was an important factor for the stability of {111} crystal plane of PT OCT single crystal nanocrystals. (2) It was found that the growth of PT OCT single crystal nanocrystals was oriented aggregation growth mode (OA) mechanism, that is, the formation of tetragonal perovskite in the early stage of hydrothermal reaction. The size of PT nanoparticles with mineral structure is about 2-4 nm. The nanoparticles gradually gather together under the combined action of electrostatic force, Li+ action and van der Waals force. During the growth process, the orientation of the grains is adjusted continuously to reduce the surface energy, and the octahedral morphology of PT single crystal nanocrystals is finally formed. When the octahedral morphology was basically formed, Li+ gradually migrated from the octahedral to the surface through diffusion, and finally aggregated on the crystal surface to stabilize the PT OCT {111} crystal plane. (3) Visible light photocatalysis showed that PT OCT single crystal nanocrystals were excellent photocatalysts with a complete degradation concentration of 10 minutes or so. UV absorption spectra show that the band gap of PTOCT single crystal nanocrystals decreases from 2.8-3.0 eV to 2.58 eV (480 nm), and the band gap of PTOCT single crystal nanocrystals decreases from 2.8-3.0 eV to 2.58 eV (480 nm) in the range of 500-700 nm. On the other hand, low-temperature electron paramagnetic resonance (ESR) studies show that the presence of Ti3+ in PT OCT single crystal nanocrystals may lead to the formation of localized states in the band structure, reduce the band gap of PT OCT nanocrystals, enhance the absorption of visible light band, and make PT OCT single crystal nanocrystals have high visible light efficiency. (4) Perovskite PTO truncated octahedral nanocrystals with uniform size and good dispersion were successfully prepared by solid-state reaction for the first time. The results show that the partial melting of Pb304 provides a liquid-phase environment similar to that in solution for homogeneous nucleation-growth of PTO nanocrystals. The size of single crystal PTO nanoparticles in mineral phase is 50-100 nm, with regular crystal planes and octahedral cross-sectional morphology. The main exposed planes are {111} and {01l} with a small number of {100} crystal planes. (5) Pt-PTO nanocomposite structures supported on PTO cross-sectional octahedral nanocrystals were successfully prepared by wet-chemical oxidation-reduction reaction. The structure study shows that single crystal Pt nanocrystals with the size of 3-5 nm selectively grow on the {111] surface of perovskite PTO nanoparticles, and the single crystal Pt nanocrystals have good dispersion and uniform size. CO catalytic oxidation experiments show that the initial temperature of CO conversion to CO2 is 30 C with Pt-PTO nanocrystals as catalyst, and the conversion rate of CO reaches about 50 C. (6) In order to study the kinetics of CO catalysis in Pt-PTO system, Pt single crystal nanoparticles were successfully loaded on perovskite-phase PTO truncated octahedral single crystal nanoparticles (main exposed surface is {111}), PTO nanofibers (exposed surface is {100} or {010} crystal plane) and PTO nanosheets (exposed surface is {001} crystal plane) by wet chemical method. Pt-PTO nanocomposites were prepared. The results showed that the size of supported PT particles on {111}, {100} and {001} surfaces increased gradually, and the dispersion decreased gradually, from 3-5 nm, 5-20 nm to about 100 nm. When the Pt was not loaded, PTO truncated octahedral single crystal nanoparticles, PTO nanofibers and PTO nanosheets were converted to CO catalytic oxidation at 250 C. The conversion rates are 60%, 5% and 85%, respectively. PTO nanosheets have the highest conversion efficiency to CO and PTO nanofibers have the lowest conversion efficiency to CO. At this time, the center of CO catalytic oxidation reaction is PTO nanostructure itself, and the polarity of the exposed surface of perovskite PTO nanostructure will play a leading role in the balance of CO and O2 adsorption-desorption and the control step of reaction rate. The stronger the polarity of the exposed surface, the more favorable the barrier of the catalytic oxidation reaction will be, and the higher the catalytic performance will be. (7) After loading Pt, the 100% CO conversion of Pt-PTO truncated octahedral nanoparticles, Pt-PTO nanofibers and Pt-PTO nanosheet composite structures will be at 50, 100 and 100 degrees Celsius respectively. The catalytic oxidation center of CO is Pt nanocrystals when the nanocomposite structure of 22.9 (+0.4) kcal mol-1,32.7 (+2.9) kcal mol-1,26.5 (+1.6) kcal mol-1.Pt-PTO is used as catalyst, and its microstructure and surface chemical state determine the kinetics of CO catalytic reaction. Pt nanocrystals grew into large clusters (10 nm) on PTO nanofibers and nanosheets. The proportion of active sites on the surface of Pt nanocrystals was less than that on PTO nanoparticles. (8) Perovskite nanosheets with single crystal domains were successfully prepared by hydrothermal method for the first time. The results of TEM and CS-STEM show that STO selectively grows on the four side non-polarized and {001} positive polarized surfaces of PTO nanosheets, forming a core-shell structure encapsulation layer. STO/PTO has an atomic-level resolution interface. At the interface, neither Pb nor Sr diffuses and the interface is clear. Both the polarized and non-polarized surfaces are epitaxial grown, and the thickness of the films is about 15-20 nm. When the STO films are epitaxial grown in the direction of the positive polarized surface of {001} crystal plane of PTO nanosheets, the thickness of the interface is about 1-2 cell sizes (~1 nm), and when the STO films grow on the non-polarized surface of the side, the interface is about 1-2 cell sizes (~1 nm). The thickness of STO/PTO nanocomposites is only 1 cell size (~0.4 nm). (9) STO/PTO nanocomposites have obvious ferromagnetism at room temperature. The saturation magnetization of the composites increases from 2.5 *10-3 emu/g to 2.5 *10-2 emu/g with the decrease of temperature from 300 K to 5 K, and the corresponding coercive field Hc increases from 138 Oe to 375 Oe. At 300 K, 150 K and 100 K, the magnetic field strength is greater than 500 Oe. After 0 Oe, the typical ferromagnetization curve disappears, replaced by a transition region in which the magnetization intensity M approximates zero; the magnetic field range is about 2 500 Oe, further increasing the magnetic field, the magnetization curve undergoes a sudden change, the corresponding M changes from zero to negative, and then the material becomes diamagnetic; when the magnetic field gradually decreases, it passes through again. As the temperature decreases, the critical magnetic field intensity required for the magnetic transition increases dramatically. The results of structural analysis and first-principles calculations of HAADF-STEM and STEM-EELS show that the ferromagnetism of STO/PTO nanocomposites is reversible at the interface between the ferromagnetism and the positive polarization surface. A large number of Ti3+ ions are closely related, which makes STO/PTO composites a new ferroelectric-ferromagnetic coexistence multi-ferromagnetic system.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 祝遠(yuǎn)民;劉銳銳;詹倩;;畸變鈣鈦礦結(jié)構(gòu)的晶體定向轉(zhuǎn)換方法與應(yīng)用[J];人工晶體學(xué)報(bào);2014年05期

2 陳志雄,周方橋,付剛,唐大海;鈣鈦礦結(jié)構(gòu)陶瓷N型半導(dǎo)化評(píng)述[J];材料導(dǎo)報(bào);2000年03期

3 常振勇,崔連起;鈣鈦礦金屬氧化物催化劑的研究與應(yīng)用綜述[J];精細(xì)石油化工;2002年03期

4 楊志勝;楊立功;吳剛;汪茫;陳紅征;;基于有機(jī)/無(wú)機(jī)雜化鈣鈦礦有序結(jié)構(gòu)的異質(zhì)結(jié)及其光伏性能的研究[J];化學(xué)學(xué)報(bào);2011年06期

5 莊志強(qiáng);王蘊(yùn)輝;施紅陽(yáng);;鈮鎂酸鉛類鈣鈦礦結(jié)構(gòu)鐵電多晶體的制備技術(shù)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期

6 鐘偉,吳小玲,姜洪英,湯怒江,都有為;堿金屬摻雜ABO_3和A_3B_2O_7型鈣鈦礦磁卡、磁電阻效應(yīng)研究[J];稀有金屬;2003年05期

7 范厚剛,姜偉棣,宮杰,楊麗麗,楊景海;LaNiO_3的制備及結(jié)構(gòu)的研究[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年02期

8 趙旭,栗萍,唐貴德,張變芳,禹日程;Nb摻雜對(duì)雙鈣鈦礦化合物居里溫度的影響[J];河北師范大學(xué)學(xué)報(bào);2004年04期

9 方亮,張輝,孟范成,洪學(xué)濵,劉韓星,袁潤(rùn)章;類鈣鈦礦新鈮酸鹽Ba_5LaTi_2Nb_3O_(18)的合成、結(jié)構(gòu)與介電特性[J];高等學(xué);瘜W(xué)學(xué)報(bào);2004年07期

10 嚴(yán)清峰,張一玲,李強(qiáng);鉛基馳豫型復(fù)合鈣鈦礦結(jié)構(gòu)PLZST的合成研究[J];無(wú)機(jī)材料學(xué)報(bào);2001年04期

相關(guān)會(huì)議論文 前10條

1 李菲;翁履謙;徐國(guó)躍;張樓英;;溶液絡(luò)合法制備鈣鈦礦結(jié)構(gòu)電子陶瓷粉體的合成與表征[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年

2 孟健;馮靜;劉孝娟;呂敏峰;劉建芬;周德鳳;;層狀鈣鈦礦結(jié)構(gòu)化合物的電性和磁性的研究[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊(cè))[C];2006年

3 童鵬;孫玉平;;錳基反鈣鈦礦結(jié)構(gòu)功能材料研究進(jìn)展[A];2012中國(guó)功能新材料學(xué)術(shù)論壇暨第三屆全國(guó)電磁材料及器件學(xué)術(shù)會(huì)議論文摘要集[C];2012年

4 肖萬(wàn)生;譚大勇;熊小林;劉景;徐濟(jì)安;;PbCrO_3立方鈣鈦礦壓致等結(jié)構(gòu)相變[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2011年

5 歐俊;吳伯麟;鐘蓮云;董順熙;;Ba(Mg~(x/12)Ta~(2x/12)Zr~((12-3x)/12))O_3系統(tǒng)相關(guān)系的研究[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年

6 單躍進(jìn);;新型熱電換能材料-有序鈣鈦礦結(jié)構(gòu)氧化物Cd_3TeO_6的研究[A];2004年中國(guó)材料研討會(huì)論文摘要集[C];2004年

7 馮黎明;李重河;;ABX_3鈣鈦礦結(jié)構(gòu)鹵化物的形成性[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國(guó)硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年

8 程思園;吳剛;鄧萌;陳紅征;汪茫;;基于N-6-氨己基咔唑的有機(jī)-無(wú)機(jī)雜化層狀鈣鈦礦材料[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年

9 隋郁;王陽(yáng);王先杰;王一;朱瑞濱;;鈣鈦礦La_(1-x)Ce_xCoO_3自旋態(tài)轉(zhuǎn)變驅(qū)動(dòng)的熱電響應(yīng)[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年

10 田庚方;李國(guó)寶;廖復(fù)輝;林建華;劉蘊(yùn)韜;陳東風(fēng);;新型六方鈣鈦礦Ba_5Ho_(1-x)Mn_4O_(15-y)的合成、結(jié)構(gòu)與性質(zhì)[A];中國(guó)原子能科學(xué)研究院年報(bào) 2009[C];2010年

相關(guān)重要報(bào)紙文章 前1條

1 記者 劉霞;美研制出環(huán)保型鈣鈦礦太陽(yáng)能電池[N];科技日?qǐng)?bào);2014年

相關(guān)博士學(xué)位論文 前10條

1 趙立峰;非均質(zhì)錳基鈣鈦礦的磁及輸運(yùn)特性研究[D];華中科技大學(xué);2005年

2 童鵬;反鈣鈦礦結(jié)構(gòu)鎳基化合物研究[D];中國(guó)科學(xué)院研究生院(合肥物質(zhì)科學(xué)研究院);2007年

3 薛瑞婷;有機(jī)無(wú)機(jī)類鈣鈦礦雜化分子材料的制備和表征[D];中國(guó)海洋大學(xué);2011年

4 楊威;高活性納米LaFe系鈣鈦礦的控制合成及其催化脫除小分子污染氣體的機(jī)制研究[D];北京化工大學(xué);2013年

5 張晨陽(yáng);鈣鈦礦多鐵材料的合成與性質(zhì)研究[D];吉林大學(xué);2015年

6 謝穎;A~(2+)B~(4+)O_3型鈣鈦礦晶體的結(jié)構(gòu)相變和表面穩(wěn)定性的研究[D];哈爾濱工業(yè)大學(xué);2008年

7 亓淑艷;錳(鈷)基鈣鈦礦復(fù)合氧化物的制備及磁性研究[D];哈爾濱工程大學(xué);2008年

8 任召輝;鈣鈦礦和前鈣鈦礦氧化物納米材料的制備、結(jié)構(gòu)與性能研究[D];浙江大學(xué);2008年

9 單丹;無(wú)鉛鈣鈦礦結(jié)構(gòu)陶瓷電容器介質(zhì)材料的制備與介電性能的研究[D];天津大學(xué);2007年

10 王海峰;錫酸鹽基透明導(dǎo)電膜及其在全鈣鈦礦鐵電薄膜器件中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 李娜;鈣鈦礦晶體的結(jié)構(gòu)與化學(xué)鍵[D];大連理工大學(xué);2010年

2 閆旭;Sr-Ba-Fe-Mo-O-S雙鈣鈦礦系列化合物的結(jié)構(gòu)及其性質(zhì)的研究[D];河北大學(xué);2011年

3 王鮮;類鈣鈦礦(C_4H_9NH_3)_2MX_4材料的制備與結(jié)構(gòu)[D];武漢理工大學(xué);2004年

4 儲(chǔ)艷文;基于鈣鈦礦納米材料修飾的復(fù)合材料的研究及應(yīng)用[D];江蘇科技大學(xué);2011年

5 朱紅;新型六方鈣鈦礦的合成、結(jié)構(gòu)、相變及性質(zhì)研究[D];南昌大學(xué);2012年

6 馬曉瑜;鈣鈦礦儲(chǔ)氧材料導(dǎo)電行為的研究[D];內(nèi)蒙古科技大學(xué);2012年

7 郭美榮;新型鈣鈦礦類納米纖維的設(shè)計(jì)、合成及性能研究[D];山西師范大學(xué);2013年

8 楊加棟;新型六方層狀鈣鈦礦化合物的合成、結(jié)構(gòu)及NiFe_2O_4摻雜TiO_2光催化性能[D];天津理工大學(xué);2008年

9 趙明;二價(jià)元素A位摻雜對(duì)鈣鈦礦氣敏性能的影響[D];山東大學(xué);2010年

10 李純純;系列類鈣鈦礦化合物的合成與微波性能研究[D];武漢理工大學(xué);2009年

,

本文編號(hào):2238426

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2238426.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶01546***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com