鈣鈦礦鐵電氧化物單晶納米結(jié)構(gòu)的表面、界面及性能研究
[Abstract]:Perovskite ferroelectric single crystal nanostructures have potential applications in the fields of high density storage, energy conversion and catalysis due to their unique physical and chemical properties and ferroelectric surface chemistry. It is of great theoretical and scientific significance to study the regulation and properties of Perovskite Ferroelectric oxides. Firstly, the structural characteristics of Perovskite Ferroelectric oxides are briefly summarized. The structural characteristics of Perovskite Ferroelectric oxides, the ferroelectric surface chemistry caused by spontaneous polarization and shielding, and the single domain stability of perovskite phase PbTi03 (PTO) nanostructures are summarized and analyzed. The preparation and research status of ferroelectric oxide nanostructures are discussed. Especially, the regular facets of Perovskite Ferroelectric nanocrystals, ferroelectric surface chemistry, the influence of iron electrode on gas adsorption, noble metal growth and catalytic performance are discussed and summarized in detail. In this paper, perovskite PTO polyhedron nanostructures and STO/PTO nanocomposites with regular geometry shapes were prepared by hydrothermal method and solid state reaction method, respectively. The main contents and results of this dissertation are as follows: (1) Inorganic salt ions are used in the preparation of non-magnetic perovskite oxides. Perovskite PTO single crystal nanocrystals (PT OCT) with regular facets and smooth octahedral morphology were successfully prepared by assisted hydrothermal method for the first time. The size of PT OCT nanocrystals was 50-100 nm, and the exposed surface was {111} crystal plane. The Curie temperature was 485.56 C. The results of HAADF-STEM and STEM-EELS showed that there was Li in the surface layer of PT OCT single crystal nanocrystals ~2 nm. Li-O bond was formed by the combination of Li and 0, and the existence of Li-O bond was an important factor for the stability of {111} crystal plane of PT OCT single crystal nanocrystals. (2) It was found that the growth of PT OCT single crystal nanocrystals was oriented aggregation growth mode (OA) mechanism, that is, the formation of tetragonal perovskite in the early stage of hydrothermal reaction. The size of PT nanoparticles with mineral structure is about 2-4 nm. The nanoparticles gradually gather together under the combined action of electrostatic force, Li+ action and van der Waals force. During the growth process, the orientation of the grains is adjusted continuously to reduce the surface energy, and the octahedral morphology of PT single crystal nanocrystals is finally formed. When the octahedral morphology was basically formed, Li+ gradually migrated from the octahedral to the surface through diffusion, and finally aggregated on the crystal surface to stabilize the PT OCT {111} crystal plane. (3) Visible light photocatalysis showed that PT OCT single crystal nanocrystals were excellent photocatalysts with a complete degradation concentration of 10 minutes or so. UV absorption spectra show that the band gap of PTOCT single crystal nanocrystals decreases from 2.8-3.0 eV to 2.58 eV (480 nm), and the band gap of PTOCT single crystal nanocrystals decreases from 2.8-3.0 eV to 2.58 eV (480 nm) in the range of 500-700 nm. On the other hand, low-temperature electron paramagnetic resonance (ESR) studies show that the presence of Ti3+ in PT OCT single crystal nanocrystals may lead to the formation of localized states in the band structure, reduce the band gap of PT OCT nanocrystals, enhance the absorption of visible light band, and make PT OCT single crystal nanocrystals have high visible light efficiency. (4) Perovskite PTO truncated octahedral nanocrystals with uniform size and good dispersion were successfully prepared by solid-state reaction for the first time. The results show that the partial melting of Pb304 provides a liquid-phase environment similar to that in solution for homogeneous nucleation-growth of PTO nanocrystals. The size of single crystal PTO nanoparticles in mineral phase is 50-100 nm, with regular crystal planes and octahedral cross-sectional morphology. The main exposed planes are {111} and {01l} with a small number of {100} crystal planes. (5) Pt-PTO nanocomposite structures supported on PTO cross-sectional octahedral nanocrystals were successfully prepared by wet-chemical oxidation-reduction reaction. The structure study shows that single crystal Pt nanocrystals with the size of 3-5 nm selectively grow on the {111] surface of perovskite PTO nanoparticles, and the single crystal Pt nanocrystals have good dispersion and uniform size. CO catalytic oxidation experiments show that the initial temperature of CO conversion to CO2 is 30 C with Pt-PTO nanocrystals as catalyst, and the conversion rate of CO reaches about 50 C. (6) In order to study the kinetics of CO catalysis in Pt-PTO system, Pt single crystal nanoparticles were successfully loaded on perovskite-phase PTO truncated octahedral single crystal nanoparticles (main exposed surface is {111}), PTO nanofibers (exposed surface is {100} or {010} crystal plane) and PTO nanosheets (exposed surface is {001} crystal plane) by wet chemical method. Pt-PTO nanocomposites were prepared. The results showed that the size of supported PT particles on {111}, {100} and {001} surfaces increased gradually, and the dispersion decreased gradually, from 3-5 nm, 5-20 nm to about 100 nm. When the Pt was not loaded, PTO truncated octahedral single crystal nanoparticles, PTO nanofibers and PTO nanosheets were converted to CO catalytic oxidation at 250 C. The conversion rates are 60%, 5% and 85%, respectively. PTO nanosheets have the highest conversion efficiency to CO and PTO nanofibers have the lowest conversion efficiency to CO. At this time, the center of CO catalytic oxidation reaction is PTO nanostructure itself, and the polarity of the exposed surface of perovskite PTO nanostructure will play a leading role in the balance of CO and O2 adsorption-desorption and the control step of reaction rate. The stronger the polarity of the exposed surface, the more favorable the barrier of the catalytic oxidation reaction will be, and the higher the catalytic performance will be. (7) After loading Pt, the 100% CO conversion of Pt-PTO truncated octahedral nanoparticles, Pt-PTO nanofibers and Pt-PTO nanosheet composite structures will be at 50, 100 and 100 degrees Celsius respectively. The catalytic oxidation center of CO is Pt nanocrystals when the nanocomposite structure of 22.9 (+0.4) kcal mol-1,32.7 (+2.9) kcal mol-1,26.5 (+1.6) kcal mol-1.Pt-PTO is used as catalyst, and its microstructure and surface chemical state determine the kinetics of CO catalytic reaction. Pt nanocrystals grew into large clusters (10 nm) on PTO nanofibers and nanosheets. The proportion of active sites on the surface of Pt nanocrystals was less than that on PTO nanoparticles. (8) Perovskite nanosheets with single crystal domains were successfully prepared by hydrothermal method for the first time. The results of TEM and CS-STEM show that STO selectively grows on the four side non-polarized and {001} positive polarized surfaces of PTO nanosheets, forming a core-shell structure encapsulation layer. STO/PTO has an atomic-level resolution interface. At the interface, neither Pb nor Sr diffuses and the interface is clear. Both the polarized and non-polarized surfaces are epitaxial grown, and the thickness of the films is about 15-20 nm. When the STO films are epitaxial grown in the direction of the positive polarized surface of {001} crystal plane of PTO nanosheets, the thickness of the interface is about 1-2 cell sizes (~1 nm), and when the STO films grow on the non-polarized surface of the side, the interface is about 1-2 cell sizes (~1 nm). The thickness of STO/PTO nanocomposites is only 1 cell size (~0.4 nm). (9) STO/PTO nanocomposites have obvious ferromagnetism at room temperature. The saturation magnetization of the composites increases from 2.5 *10-3 emu/g to 2.5 *10-2 emu/g with the decrease of temperature from 300 K to 5 K, and the corresponding coercive field Hc increases from 138 Oe to 375 Oe. At 300 K, 150 K and 100 K, the magnetic field strength is greater than 500 Oe. After 0 Oe, the typical ferromagnetization curve disappears, replaced by a transition region in which the magnetization intensity M approximates zero; the magnetic field range is about 2 500 Oe, further increasing the magnetic field, the magnetization curve undergoes a sudden change, the corresponding M changes from zero to negative, and then the material becomes diamagnetic; when the magnetic field gradually decreases, it passes through again. As the temperature decreases, the critical magnetic field intensity required for the magnetic transition increases dramatically. The results of structural analysis and first-principles calculations of HAADF-STEM and STEM-EELS show that the ferromagnetism of STO/PTO nanocomposites is reversible at the interface between the ferromagnetism and the positive polarization surface. A large number of Ti3+ ions are closely related, which makes STO/PTO composites a new ferroelectric-ferromagnetic coexistence multi-ferromagnetic system.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 祝遠(yuǎn)民;劉銳銳;詹倩;;畸變鈣鈦礦結(jié)構(gòu)的晶體定向轉(zhuǎn)換方法與應(yīng)用[J];人工晶體學(xué)報(bào);2014年05期
2 陳志雄,周方橋,付剛,唐大海;鈣鈦礦結(jié)構(gòu)陶瓷N型半導(dǎo)化評(píng)述[J];材料導(dǎo)報(bào);2000年03期
3 常振勇,崔連起;鈣鈦礦金屬氧化物催化劑的研究與應(yīng)用綜述[J];精細(xì)石油化工;2002年03期
4 楊志勝;楊立功;吳剛;汪茫;陳紅征;;基于有機(jī)/無(wú)機(jī)雜化鈣鈦礦有序結(jié)構(gòu)的異質(zhì)結(jié)及其光伏性能的研究[J];化學(xué)學(xué)報(bào);2011年06期
5 莊志強(qiáng);王蘊(yùn)輝;施紅陽(yáng);;鈮鎂酸鉛類鈣鈦礦結(jié)構(gòu)鐵電多晶體的制備技術(shù)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
6 鐘偉,吳小玲,姜洪英,湯怒江,都有為;堿金屬摻雜ABO_3和A_3B_2O_7型鈣鈦礦磁卡、磁電阻效應(yīng)研究[J];稀有金屬;2003年05期
7 范厚剛,姜偉棣,宮杰,楊麗麗,楊景海;LaNiO_3的制備及結(jié)構(gòu)的研究[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年02期
8 趙旭,栗萍,唐貴德,張變芳,禹日程;Nb摻雜對(duì)雙鈣鈦礦化合物居里溫度的影響[J];河北師范大學(xué)學(xué)報(bào);2004年04期
9 方亮,張輝,孟范成,洪學(xué)濵,劉韓星,袁潤(rùn)章;類鈣鈦礦新鈮酸鹽Ba_5LaTi_2Nb_3O_(18)的合成、結(jié)構(gòu)與介電特性[J];高等學(xué);瘜W(xué)學(xué)報(bào);2004年07期
10 嚴(yán)清峰,張一玲,李強(qiáng);鉛基馳豫型復(fù)合鈣鈦礦結(jié)構(gòu)PLZST的合成研究[J];無(wú)機(jī)材料學(xué)報(bào);2001年04期
相關(guān)會(huì)議論文 前10條
1 李菲;翁履謙;徐國(guó)躍;張樓英;;溶液絡(luò)合法制備鈣鈦礦結(jié)構(gòu)電子陶瓷粉體的合成與表征[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
2 孟健;馮靜;劉孝娟;呂敏峰;劉建芬;周德鳳;;層狀鈣鈦礦結(jié)構(gòu)化合物的電性和磁性的研究[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊(cè))[C];2006年
3 童鵬;孫玉平;;錳基反鈣鈦礦結(jié)構(gòu)功能材料研究進(jìn)展[A];2012中國(guó)功能新材料學(xué)術(shù)論壇暨第三屆全國(guó)電磁材料及器件學(xué)術(shù)會(huì)議論文摘要集[C];2012年
4 肖萬(wàn)生;譚大勇;熊小林;劉景;徐濟(jì)安;;PbCrO_3立方鈣鈦礦壓致等結(jié)構(gòu)相變[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2011年
5 歐俊;吳伯麟;鐘蓮云;董順熙;;Ba(Mg~(x/12)Ta~(2x/12)Zr~((12-3x)/12))O_3系統(tǒng)相關(guān)系的研究[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
6 單躍進(jìn);;新型熱電換能材料-有序鈣鈦礦結(jié)構(gòu)氧化物Cd_3TeO_6的研究[A];2004年中國(guó)材料研討會(huì)論文摘要集[C];2004年
7 馮黎明;李重河;;ABX_3鈣鈦礦結(jié)構(gòu)鹵化物的形成性[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國(guó)硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年
8 程思園;吳剛;鄧萌;陳紅征;汪茫;;基于N-6-氨己基咔唑的有機(jī)-無(wú)機(jī)雜化層狀鈣鈦礦材料[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年
9 隋郁;王陽(yáng);王先杰;王一;朱瑞濱;;鈣鈦礦La_(1-x)Ce_xCoO_3自旋態(tài)轉(zhuǎn)變驅(qū)動(dòng)的熱電響應(yīng)[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
10 田庚方;李國(guó)寶;廖復(fù)輝;林建華;劉蘊(yùn)韜;陳東風(fēng);;新型六方鈣鈦礦Ba_5Ho_(1-x)Mn_4O_(15-y)的合成、結(jié)構(gòu)與性質(zhì)[A];中國(guó)原子能科學(xué)研究院年報(bào) 2009[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 記者 劉霞;美研制出環(huán)保型鈣鈦礦太陽(yáng)能電池[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 趙立峰;非均質(zhì)錳基鈣鈦礦的磁及輸運(yùn)特性研究[D];華中科技大學(xué);2005年
2 童鵬;反鈣鈦礦結(jié)構(gòu)鎳基化合物研究[D];中國(guó)科學(xué)院研究生院(合肥物質(zhì)科學(xué)研究院);2007年
3 薛瑞婷;有機(jī)無(wú)機(jī)類鈣鈦礦雜化分子材料的制備和表征[D];中國(guó)海洋大學(xué);2011年
4 楊威;高活性納米LaFe系鈣鈦礦的控制合成及其催化脫除小分子污染氣體的機(jī)制研究[D];北京化工大學(xué);2013年
5 張晨陽(yáng);鈣鈦礦多鐵材料的合成與性質(zhì)研究[D];吉林大學(xué);2015年
6 謝穎;A~(2+)B~(4+)O_3型鈣鈦礦晶體的結(jié)構(gòu)相變和表面穩(wěn)定性的研究[D];哈爾濱工業(yè)大學(xué);2008年
7 亓淑艷;錳(鈷)基鈣鈦礦復(fù)合氧化物的制備及磁性研究[D];哈爾濱工程大學(xué);2008年
8 任召輝;鈣鈦礦和前鈣鈦礦氧化物納米材料的制備、結(jié)構(gòu)與性能研究[D];浙江大學(xué);2008年
9 單丹;無(wú)鉛鈣鈦礦結(jié)構(gòu)陶瓷電容器介質(zhì)材料的制備與介電性能的研究[D];天津大學(xué);2007年
10 王海峰;錫酸鹽基透明導(dǎo)電膜及其在全鈣鈦礦鐵電薄膜器件中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李娜;鈣鈦礦晶體的結(jié)構(gòu)與化學(xué)鍵[D];大連理工大學(xué);2010年
2 閆旭;Sr-Ba-Fe-Mo-O-S雙鈣鈦礦系列化合物的結(jié)構(gòu)及其性質(zhì)的研究[D];河北大學(xué);2011年
3 王鮮;類鈣鈦礦(C_4H_9NH_3)_2MX_4材料的制備與結(jié)構(gòu)[D];武漢理工大學(xué);2004年
4 儲(chǔ)艷文;基于鈣鈦礦納米材料修飾的復(fù)合材料的研究及應(yīng)用[D];江蘇科技大學(xué);2011年
5 朱紅;新型六方鈣鈦礦的合成、結(jié)構(gòu)、相變及性質(zhì)研究[D];南昌大學(xué);2012年
6 馬曉瑜;鈣鈦礦儲(chǔ)氧材料導(dǎo)電行為的研究[D];內(nèi)蒙古科技大學(xué);2012年
7 郭美榮;新型鈣鈦礦類納米纖維的設(shè)計(jì)、合成及性能研究[D];山西師范大學(xué);2013年
8 楊加棟;新型六方層狀鈣鈦礦化合物的合成、結(jié)構(gòu)及NiFe_2O_4摻雜TiO_2光催化性能[D];天津理工大學(xué);2008年
9 趙明;二價(jià)元素A位摻雜對(duì)鈣鈦礦氣敏性能的影響[D];山東大學(xué);2010年
10 李純純;系列類鈣鈦礦化合物的合成與微波性能研究[D];武漢理工大學(xué);2009年
,本文編號(hào):2238426
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2238426.html