用于降低吸附床接觸熱阻的導熱復合材料研究
[Abstract]:In the face of severe energy and environmental problems, it is a good solution to take adsorption refrigeration technology as the supplement and substitute of steam compression refrigeration technology. In recent years, scholars at home and abroad have done a lot of research on adsorption refrigeration, which lays a foundation for the engineering application of adsorption refrigeration. There have also been a lot of research results on enhanced heat and mass transfer in adsorption bed, but so far, it is not effective to reduce the contact thermal resistance between adsorption bed and adsorbent and further improve the heat transfer capacity of adsorption bed. An easy solution. In this paper, a high temperature and high thermal conductivity composite material has been developed, which can be used between adsorbent and adsorption bed to reduce the contact thermal resistance between adsorbent and adsorption bed. The main contents are as follows: firstly, in order to evaluate the thermal conductivity of the composites, a thermal conductivity test bench based on steady state method was set up. In this paper, the working principle, structure composition and test steps of the test bench are introduced in detail, and the precision of the test bench is calibrated by using 304L stainless steel sample. The results show that the maximum error is 7.1. Then, the causes of this error are analyzed from the aspects of test principle, calculation model and machining process. Then the high thermal conductivity composites were prepared with epoxy resin E-44 as matrix, diaminodiphenyl methane (DDM) as curing agent and micrometer A1203 as thermal conductive filler. The thermal conductivity of the composites increases with the increase of the filler content. However, the rising process is not linear, but is in a slowly rising state before the formation of the heat conduction network chain, and once the heat conduction network chain is formed, the thermal conductivity is improved rapidly. Regarding the particle size of filler, the Al2O3 particles of 101 渭 m and 35 渭 m were selected to study. The experimental results show that the thermal conductivity of composites with 10 渭 m particles as thermal conductive filler is higher. The experimental results were fitted by Agari equation, and the reason of the phenomenon was explained theoretically. The thermal conductivity of the composite is better than that of the single particle by mixing the two particles in different proportions, and when the two particles are mixed at 1:1, the thermal conductivity of the composite is the best. In order to improve the interfacial properties between filler and matrix, filler particles were treated with silane coupling agent KH-560. The thermal conductivity of the composite treated with different concentration of coupling agent was tested. When the concentration of coupling agent KH-560 was 8%, the thermal conductivity of the composite was the best. The viscosity of the system increases when the filler particles treated by coupling agent are added to the matrix. In order to reduce the viscosity of the system and improve the dispersion of filler particles, a certain concentration of diluent was added to the system. The addition of diluent can effectively improve the thermal conductivity of the composites, but not the more the better, the best effect is when the mass fraction is 40. Because there are many factors that affect the thermal conductivity of composite materials, in order to find out the appropriate proportion scheme and study the interaction among the factors, the orthogonal experiment table of 5 factors and 5 levels is developed. The above factors were analyzed comprehensively by orthogonal experiment, and the optimum experimental formula was obtained. On the basis of the experimental scheme, the thermal resistance between the adsorption bed and the adsorbent was calculated by least square method, and the thermal resistance between the adsorbent and the adsorption bed was calculated by using the least square method, and the thermal resistance between the adsorbent and the adsorbent was calculated by using the least square method. And compared with the contact thermal resistance in the literature. The results show that the contact thermal resistance can be reduced by 52.6%.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB332
【相似文獻】
相關期刊論文 前10條
1 孫黎明;鄧艷芝;凌祥;;吸附床傳熱性能的數(shù)值模擬[J];石油和化工設備;2009年09期
2 李海霞;閆靜雯;;用導熱理論確定制冷吸附床偏心距的數(shù)值模擬研究[J];河南理工大學學報(自然科學版);2010年02期
3 徐進;鄧艷芝;錢金康;;吸附式制冷循環(huán)中肋板式吸附床的數(shù)值模擬[J];石油和化工設備;2010年09期
4 ;回轉吸附床式除濕裝置[J];化學世界;1983年03期
5 馮毅,譚盈科;吸附式制冷裝置中吸附床傳熱傳質的研究[J];化工學報;1991年03期
6 侯慶林;馬連湘;;化學吸附式制冷吸附床的模擬研究與結構分析[J];青島科技大學學報(自然科學版);2014年01期
7 張建;錢煥群;;天然氣吸附床傳熱試驗研究[J];油氣儲運;2008年07期
8 劉應書;鄭新港;李永齡;張輝;劉文海;;變壓吸附空分制氧體系軸向流吸附床濃度分布研究[J];低溫與特氣;2011年01期
9 夏良志;王金渠;桑鳳亭;趙素琴;李永釗;耿自才;初榮清;顧勝雄;;COIL低溫真空吸附床結構的改進[J];強激光與粒子束;2006年11期
10 陳煥新;魏莉;張綽;殷明;;殼管式吸附床傳熱特性及其強化傳熱研究[J];華中科技大學學報(自然科學版);2012年10期
相關會議論文 前8條
1 劉業(yè)鳳;王如竹;;吸附式空氣取水器的吸附床內傳熱傳質分析[A];上海市制冷學會二○○三年學術年會論文集[C];2003年
2 魏莉;陳煥新;張威;董媛媛;張綽;殷明;;單元管長度對殼管式吸附床傳熱特性的影響[A];走中國創(chuàng)造之路——2011中國制冷學會學術年會論文集[C];2011年
3 錢煥群;徐大坤;朱義成;;天然氣吸附床吸附過程的數(shù)值模擬[A];山東土木建筑學會建筑熱能動力專業(yè)委員會第十二屆學術交流大會論文集[C];2008年
4 高旭;徐敬玉;A.S.Maiga;王勤;陳光明;;一種用于吸附式制冷系統(tǒng)的新型流態(tài)化吸附床的初步實驗研究[A];浙江制冷(2013年第01期總第102期)[C];2013年
5 張華俊;韓寶琦;陳旭;田偉明;郭連順;孫國平;;雙吸附器回熱循環(huán)中吸附床溫度場的分析[A];第九屆全國冷水機組與熱泵技術學術會議論文集[C];1999年
6 宋飛;杜維明;吳業(yè)正;晏剛;;CaCl_2-CH_3OH吸附式熱泵吸附床特性與動態(tài)仿真[A];第十二屆全國冷(熱)水機組與熱泵技術研討會論文集[C];2005年
7 黃護林;王洋;;一種新型水冷式太陽能吸附制冷的實驗系統(tǒng)[A];制冷空調新技術進展——第四屆全國制冷空調新技術研討會論文集[C];2006年
8 鄭青榕;顧安忠;蔡振雄;廖海峰;鄭超瑜;;活性炭吸附儲氫罐充放氣過程的試驗研究[A];第七屆全國氫能學術會議專輯[C];2006年
相關博士學位論文 前3條
1 孟祥睿;中溫余熱吸附制冷用復合吸附劑及吸附床研究[D];鄭州大學;2009年
2 齊朝暉;化學吸附式制冷系統(tǒng)的數(shù)值模擬和實驗研究[D];湖南大學;2002年
3 王凱;氯化鈣/膨脹石墨混合吸附劑的吸附特性及其在雙熱管型吸附制冷系統(tǒng)中的應用[D];上海交通大學;2007年
相關碩士學位論文 前10條
1 候慶林;氯化鈣—氨吸附式制冷吸附床的數(shù)值模擬與性能優(yōu)化[D];青島科技大學;2013年
2 熊國棟;用于降低吸附床接觸熱阻的導熱復合材料研究[D];山東大學;2015年
3 謝軍;固體吸附式制冷系統(tǒng)中新型針刺板吸附床的強化傳熱研究[D];鄭州大學;2007年
4 孫天寶;太陽能吸附式制冷吸附床的數(shù)值模擬研究[D];北京工業(yè)大學;2010年
5 程東娜;固體吸附式制冷系統(tǒng)中吸附床傳熱過程的數(shù)值模擬研究[D];鄭州大學;2006年
6 蘭青;新型吸附床太陽能冰箱的實驗研究[D];云南師范大學;2004年
7 董媛媛;重力式熱管吸附床結構及傳熱特性研究[D];華中科技大學;2012年
8 李秋英;太陽能吸附式制冷吸附床的設計及數(shù)值模擬[D];江蘇大學;2006年
9 張成軍;固體吸附式制冷系統(tǒng)中吸附床傳熱性能研究[D];南京理工大學;2010年
10 谷杰然;熱管式吸附床在船舶吸附式制冷中的應用研究[D];大連海事大學;2008年
,本文編號:2207341
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2207341.html