基于上轉(zhuǎn)換納米材料的生物傳感新方法
[Abstract]:With the continuous development of nanotechnology and the emergence of new nanomaterials, nanoscience has injected new vitality into the development of biosensors and opened up new ideas for development. In recent years, more and more new nanoluminescent materials have become the focus of current research because of their unique optical properties, especially upconversion nanoluminescent materials. Ultraviolet and visible light can be converted from near infrared (usually 980 nm) to intense ultraviolet (UV) by multi-photon mechanism. Ultraviolet and visible light has the advantages of low excitation energy, low background, high quantum yield, low photobleaching, high and stable luminescence intensity, and emission wavelength can be adjusted by controlling its composition. Because of its low toxicity, good biocompatibility and strong tissue penetration ability, it has been extensively studied in cell, tumor imaging diagnosis and treatment. Based on this, this paper focuses on the new upconversion nanomaterials to carry out the following three aspects: First, the preparation of blue fluorescent NaYF_4:Yb, Tm/Na by solvothermal method. YF_4 upconversion nanoparticles. Combining the optical properties of UCNPs with the unique electronic properties of graphene oxide, a simple, ultra-sensitive biosensor has been developed for the detection of S1 nucleic acid endonuclease. The principle is that the 5'-terminal of DNA modifies the phosphoryl group, which has a stronger binding force with lanthanide ions, and thus makes the oil phase oil. Oleic acid on the surface of UCNPs is replaced by ligand exchange at the liquid-liquid interface. DNA is assembled on the surface of UCNPs. The DNA on the surface of UCNPs can be adsorbed to the surface of graphene through the conjugation and hydrophobicity of pi-pi, thus shortening the distance between UCNPs and graphene. The fluorescence resonance energy transfer occurs between them. In the presence of S1 endonuclease, the DNA on the surface of up-converted nanoparticles is cleaved into a single or short oligonucleotide fragment by S1 endonuclease, resulting in the weakening of the interaction between UCNPs and graphene, and the UCNPs are far away from graphene oxide, thus the fluorescence signal is recovered. Compared with previous methods for detecting S1 endonuclease, the method is more sensitive to detect S1 endonuclease with a sensitivity of 1 (-4) units m L (-1) and explores S1 nuclease inhibition test. Opportunities for applications such as biology, biomedicine, bio/chemical sensing. 2. Solvothermal synthesis of green fluorescent NaYF_4:Yb, Er upconversion nanoparticles. Combining the optical properties of UCNPs, the special enzyme digestion activity of Exo III and the unique electronic properties of graphene oxide, a novel, simple and highly sensitive fraction has been developed. The principle of BRCA1 amplification is that the 5'-terminal of DNA modifies the phosphate group, and the oleic acid on the surface of the oil-phase UCNPs is replaced by ligand exchange at the liquid-liquid interface because of the stronger binding force between the phosphate group and lanthanide ions. The DNA is assembled on the surface of the UCNPs when graphite is added. When EN and Exo III are present, the DNA on the surface of up-converted nanoparticles can be adsorbed to the surface of graphene through the conjugation and hydrophobic interaction of pi-pi, thus closing the distance between UCNPs and graphene. The fluorescence resonance energy transfer occurs between UCNPs and graphene, and the fluorescence of UCNPs is quenched. This method is sensitive and easy to operate, and can be used to detect BRCA1. NaYF_4:Yb, Tm/NaYF_4 up-conversion nanoparticles emitting blue fluorescence were prepared by solvothermal method in the range of 0.02 nM~0.9 nM.3. A novel, sensitive biosensor was designed for the detection of Hg~ (2+) based on the optical properties of UCNPs and the electronic properties of Hg. In the presence of Hg ~ (2 +), Hg ~ (2 +) promotes the non-radiation electron/hole annihilation of UCNPs through an effective electron transfer process. This method has a good linear relationship between 10 nM and 10 mM, and the detection limit in aqueous solution is 5 nM. In the detection of real samples, the recovery rate is in the range of 97%-102%, and the relative standard deviation is about 6%. It shows that the sensor can effectively reduce the background interference in complex biological samples, and the detection limit is 5 nM. Satisfactory results can be obtained in quantitative analysis.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB383.1;TP212.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐東勇,臧競(jìng)存;上轉(zhuǎn)換激光和上轉(zhuǎn)換發(fā)光材料的研究進(jìn)展[J];人工晶體學(xué)報(bào);2001年02期
2 洪廣言;;新型紅外變可見(jiàn)上轉(zhuǎn)換薄膜問(wèn)世[J];稀土信息;1993年03期
3 石連升;溫猛;錢(qián)艷楠;王銳;郝銘;;Yb:Er:Tm:LiTaO_3的上轉(zhuǎn)換發(fā)白光性能研究[J];中國(guó)稀土學(xué)報(bào);2011年01期
4 陳奇丹;楊生;;上轉(zhuǎn)換材料的制備及發(fā)展[J];廣東化工;2012年08期
5 周永紅;田玉鵬;吳杰穎;;有機(jī)上轉(zhuǎn)換激光材料研究進(jìn)展[J];化工時(shí)刊;2006年04期
6 張幸林;楊會(huì)然;孫會(huì)彬;劉淑娟;趙強(qiáng);黃維;;基于三線(xiàn)態(tài)-三線(xiàn)態(tài)湮滅的能量上轉(zhuǎn)換[J];化學(xué)進(jìn)展;2012年10期
7 李鑫德;上轉(zhuǎn)換熒光和激光[J];稀土信息;1997年07期
8 吳長(zhǎng)鋒,秦冠仕,秦偉平,陳寶玖,黃世華,劉晃清,趙丹;Er~(3+)/Yb~(3+)共摻雜AlF_3基氟化物玻璃材料的頻率上轉(zhuǎn)換[J];中國(guó)稀土學(xué)報(bào);2001年06期
9 涂進(jìn)春;韓星星;李曉天;李楠;黃瑋;王小紅;劉鐘馨;曹陽(yáng);;α-NaYF_4:Yb,Er/SBA-15主客體復(fù)合材料的制備及其上轉(zhuǎn)換性能的研究[J];化學(xué)工程師;2012年07期
10 李潤(rùn)青;喻璽;袁云霞;劉志洪;;基于氧化碳球的上轉(zhuǎn)換熒光傳感新方法檢測(cè)銀離子[J];分析科學(xué)學(xué)報(bào);2012年06期
相關(guān)會(huì)議論文 前10條
1 嚴(yán)冬;楊正文;竺侃;;A1_2Y_4O_9:Yb,Er反蛋白石中的上轉(zhuǎn)換發(fā)射和顏色調(diào)諧[A];戰(zhàn)略性新興產(chǎn)業(yè)的培育和發(fā)展——首屆云南省科協(xié)學(xué)術(shù)年會(huì)論文集[C];2011年
2 臧競(jìng)存;鄒玉林;劉燕行;單秉瑞;;上轉(zhuǎn)換激光晶體研究進(jìn)展[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年
3 孫雅娟;孔祥貴;張宏;;稀土摻雜上轉(zhuǎn)換納米晶作為表面熒光探針研究[A];第11屆全國(guó)發(fā)光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
4 汪超;程亮;劉莊;;上轉(zhuǎn)換納米晶體癌癥治療的應(yīng)用[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
5 葉常青;周宇揚(yáng);梁作芹;王筱梅;;1.新型蒽衍生物受體應(yīng)用高效上轉(zhuǎn)換體系的設(shè)計(jì)合成[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第21分會(huì):光化學(xué)[C];2014年
6 彭桂芳;洪廣言;賈慶新;李有謨;;紅外變可見(jiàn)上轉(zhuǎn)換材料薄膜的研制[A];首屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
7 谷戰(zhàn)軍;田甘;趙玉亮;;熒光上轉(zhuǎn)換納米材料的光譜調(diào)控及其在生物醫(yī)學(xué)中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第35分會(huì):納米生物醫(yī)學(xué)中的化學(xué)問(wèn)題[C];2014年
8 高偉;李嬌;高當(dāng)麗;田宇;崔敏;孫瑜;閻曉慶;鄭海榮;;顆粒形貌對(duì)六方相NaYbF_4:Pr~(3+)納米晶體上轉(zhuǎn)換熒光的影響[A];第七屆全國(guó)稀土發(fā)光材料學(xué)術(shù)研討會(huì)會(huì)議論文摘要集[C];2011年
9 黃淮青;密叢叢;王猛;孫盼;徐淑坤;;磁性稀土摻雜上轉(zhuǎn)換納米發(fā)光顆粒的合成及表征[A];第七屆全國(guó)稀土發(fā)光材料學(xué)術(shù)研討會(huì)會(huì)議論文摘要集[C];2011年
10 李嬌;高偉;高當(dāng)麗;田宇;鄭海榮;;四方相LiYF4:Yb/Er晶體顆粒的合成及上轉(zhuǎn)換熒光研究[A];2011西部光子學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2011年
相關(guān)博士學(xué)位論文 前10條
1 丁亞丹;紅外上轉(zhuǎn)換和吸收納米材料的制備、性能與生物醫(yī)學(xué)應(yīng)用[D];東北師范大學(xué);2015年
2 李亮;基于增強(qiáng)光吸收的DSSC電極修飾與光電性能研究[D];哈爾濱工業(yè)大學(xué);2015年
3 高偉;鑭系離子摻雜氟化物微納晶體的熒光特性研究[D];陜西師范大學(xué);2015年
4 谷野;診療一體化上轉(zhuǎn)換納米平臺(tái)的構(gòu)建及其腫瘤診療效果與生物安全性的研究[D];吉林大學(xué);2016年
5 王浩;稀土上轉(zhuǎn)換/硅基納米復(fù)合材料的設(shè)計(jì)制備及生物醫(yī)學(xué)應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2016年
6 岑瑤;基于上轉(zhuǎn)換顆粒等新型納米材料的生物傳感方法研究[D];湖南大學(xué);2016年
7 徐淮良;稀土離子摻雜晶體中的上轉(zhuǎn)換過(guò)程和電磁感應(yīng)光透明現(xiàn)象的研究[D];吉林大學(xué);2006年
8 梁會(huì)娟;稀土摻雜氧化物和氟化物的上轉(zhuǎn)換熒光增強(qiáng)以及光譜研究[D];哈爾濱工業(yè)大學(xué);2011年
9 陳冠英;稀土氧化物和氟化物納米晶上轉(zhuǎn)換熒光光譜的設(shè)計(jì)研究[D];哈爾濱工業(yè)大學(xué);2009年
10 邢麗麗;鈥鐿銩摻雜鈮酸鋰晶體的制備及其上轉(zhuǎn)換白光性能研究[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 梅勇;上轉(zhuǎn)換納米晶的制備、調(diào)控和發(fā)光過(guò)程研究[D];遼寧大學(xué);2015年
2 郭淑婷;金屬—上轉(zhuǎn)換復(fù)合納米結(jié)構(gòu)的制備及性能研究[D];東南大學(xué);2015年
3 金笠飛;多功能上轉(zhuǎn)換納米晶的制備與性能研究[D];東南大學(xué);2015年
4 李振華;稀土上轉(zhuǎn)換納米粒子/聚偶氮苯復(fù)合中空微球的合成及其性質(zhì)[D];湖北工業(yè)大學(xué);2016年
5 唐靜;過(guò)渡族離子摻雜及核殼結(jié)構(gòu)對(duì)上轉(zhuǎn)換納米晶發(fā)光性質(zhì)影響研究[D];長(zhǎng)春工業(yè)大學(xué);2016年
6 孫翠翠;基于上轉(zhuǎn)換熒光納米探針的花生油中真菌毒素檢測(cè)研究[D];江蘇大學(xué);2016年
7 賴(lài)文彬;水熱法制備摻Er/Yb的KLaF_4及其上轉(zhuǎn)換性能研究[D];福州大學(xué);2014年
8 李大光;新型Sc系材料Sc_2O_3,K_2NaScF_6發(fā)光性能及NaYF_4上轉(zhuǎn)換熒光增強(qiáng)的研究[D];長(zhǎng)春工業(yè)大學(xué);2016年
9 曾濤;上轉(zhuǎn)換納米顆粒合成、組裝、表面生物功能化及其應(yīng)用[D];蘇州大學(xué);2016年
10 齊云肖;桔霉素上轉(zhuǎn)換熒光傳感檢測(cè)方法的研究[D];天津科技大學(xué);2015年
,本文編號(hào):2191427
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2191427.html