結(jié)合小波分析和BP神經(jīng)網(wǎng)絡(luò)的復(fù)合材料損傷檢測技術(shù)研究
[Abstract]:Because of its advantages of light weight, high strength and corrosion resistance, composite material has been widely used in military, aerospace, transportation, electronic and electrical fields. The damage detection of composite material is very important because it is easy to be damaged by external damage. At present, it is one of the research hotspots to use fiber Bragg grating sensor to detect the damage of composite material. In this paper, the fiber Bragg grating sensor will be used to detect the damage of composite materials by combining wavelet analysis and neural network signal processing. This paper first introduces the research background and significance of composite materials, then analyzes the research status of composite damage detection at home and abroad, at the same time, analyzes the application of wavelet analysis and neural network in damage detection. Then, the basic theory of wavelet transform is introduced, and a new signal demodulation technique of mixed programming of Lab VIEW and MATLAB is studied to realize the real-time signal processing. According to the characteristics of composite plate impulse response signal, the wavelet packet energy spectrum analysis method of the signal is studied, which can extract the characteristic information of the signal at different frequencies and provide the theoretical basis for extracting the damage characteristic vector. The relationship between sensor placement and response signal is studied. The results show that the sensor is the best when the axis of the sensor is perpendicular to the impact point and the center of the sensor is connected and the sensor is close to the impact point. Then the shock response signals of different damage conditions are obtained by simulating the damage on the composite plate, and the damage characteristic vectors of the signals are obtained by wavelet packet energy spectrum analysis. Finally, according to the damage characteristic values extracted from four sensing signals and the different damage conditions of composite plates, a BP neural network learning sample is formed, and the signal energy spectrum is proposed to extract the damage feature vector by wavelet packet analysis. The method of BP neural network is inputted to identify the damage, and a composite damage detection system combining wavelet analysis and neural network is constructed to detect the damage of composite material.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB33;TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 曾憲偉;趙衛(wèi)明;盛菊琴;;小波包分解樹結(jié)點與信號子空間頻帶的對應(yīng)關(guān)系及其應(yīng)用[J];地震學報;2008年01期
2 馬寧;馬光;李長明;;BP網(wǎng)絡(luò)局部極小值的修正算法[J];北華航天工業(yè)學院學報;2007年05期
3 楊海瑞;劉曉榮;楊俊和;潘嘉祺;;碳纖維催化石墨化的研究概況[J];上海應(yīng)用技術(shù)學院學報(自然科學版);2007年01期
4 滕海文;江見鯨;霍達;;基于小波變換的結(jié)構(gòu)損傷診斷研究[J];武漢理工大學學報;2006年10期
5 孫增壽;韓建剛;任偉新;;基于曲率模態(tài)和小波變換的結(jié)構(gòu)損傷識別方法[J];振動、測試與診斷;2005年04期
6 王峗松,褚福磊,何永勇,郭丹;BP神經(jīng)網(wǎng)絡(luò)快速收斂算法研究[J];農(nóng)業(yè)機械學報;2004年06期
7 袁英民,孫金立,萬鈞,陳新波,張海兵;某航空發(fā)動機壓氣機葉片超聲檢測信號處理——四種典型小波基的應(yīng)用比較[J];無損檢測;2004年07期
8 李國華,吳立新,吳淼,曲敬信;紅外熱像技術(shù)及其應(yīng)用的研究進展[J];紅外與激光工程;2004年03期
9 宋國君,毛子明,孫翠華,李培耀;熱固性塑料/蒙脫土納米復(fù)合材料最新研究進展[J];塑料科技;2004年03期
10 晁銳,張科,李言俊;一種基于小波變換的圖像融合算法[J];電子學報;2004年05期
相關(guān)碩士學位論文 前1條
1 李享梅;基于混合智能學習法神經(jīng)網(wǎng)絡(luò)理論及其應(yīng)用的研究[D];成都理工大學;2004年
,本文編號:2188115
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2188115.html