幾種稀土上轉(zhuǎn)換熒光生物傳感器的構(gòu)建和應(yīng)用
[Abstract]:In recent years, due to its high fluorescence efficiency, good chemical stability, high resolution and other excellent properties, rare earth up-conversion fluorescent nanomaterials have attracted wide attention, especially in biomarkers and drug therapy. Compared with the traditional fluorescent labeling materials, it has many unique advantages, such as deep tissue penetration, no damage to biological tissues, near zero background fluorescence interference, high detection sensitivity and so on. Based on the excellent properties of up-conversion nanomaterials, a series of biosensors with simple operation, high sensitivity, low cost and good selectivity were synthesized and designed by hydrothermal method for the detection of biomolecules and pesticides. The main contents are as follows: 1. A novel unlabeled up-conversion fluorescence resonance energy transfer (UC-FRET) biosensor based on the positively charged NaYF4: YbEr up-conversion nanoparticles (UCNPs) as donor and the negatively charged nanocrystalline gold (AuNPs) as the receptor was constructed. The hypersensitive detection of protamine and heparin. AuNPs were adsorbed to the surface of UCNPs by electrostatic interaction and the fluorescence quenching of up-conversion was observed. When protamine was added to the mixture of UCNPs and AuNPs, the fluorescence resonance energy transfer of (FRET) between UCNPs and AuNPs was removed due to the strong adsorption of protamine and AuNPs, which led to the recovery of UCNPs fluorescence. When protamine and heparin were added at the same time, the binding ability of protamine and heparin was stronger than that of AuNPs, so that AuNPs continued to be adsorbed on the surface of UCNPs to produce fret, which resulted in fluorescence quenching of UCNPs. The concentration of protamine and heparin was proportional to the fluorescence change of UCNPs. The detection limits of protamine and heparin were 0.0067 渭 g/mL and 0.0007 渭 g / mL, respectively. At the same time, the sensor can be used to determine protamine and heparin in serum. It shows that this biosensor can be applied to the detection of complex biological samples. A novel unlabeled fluorescence resonance energy transfer (FRET) organism based on NaYF4: YbEr up-conversion nano-material (UCNPs) as donor and nanocrystalline gold (Au NPs) as receptor has been constructed. The biosensor for the detection of organophosphorus pesticide. AuNPs was adsorbed to the surface of UCNPs by electrostatic interaction. The fluorescence of UCNPs was significantly quenched by the sensor. Acetylcholinesterase (AChE) catalyzes the hydrolysis of thioacetylcholine (ATC) to thiocholine, which can induce the aggregation of AuNPs, so it can not quench the fluorescence of UCNPs. In the presence of organophosphorus pesticides, it can inhibit the activity of AChE, prevent the production of choline thioate, keep AuNPs dispersed and produce fret, which leads to the fluorescence quenching of UCNPs. The inhibition efficiency of organophosphorus pesticides on acetylcholinesterase activity can be achieved by measuring the fluorescence changes of UCNPs. Under the optimum experimental conditions, the logarithm of pesticide concentration was proportional to the fluorescence change of UCNPs. The lowest detection limits of methyl parathion and monocrotophos were 0.67ng / L and 67.00 ng / L respectively. At the same time, the biosensor can be applied to the detection of agricultural residues in food samples. A fluorescence method for detection of uric acid (UA) based on NaYF4:Yb3 Tm3 upconversion nanoparticles (UCNPs) was constructed. Uric acid oxidase can oxidize allantoin and hydrogen peroxide (H2O2) H _ 2O _ 2 in the presence of HRP to further oxidize o-phenylenediamine (OPD) to oxidize OPD (oxOPD). Ox OPD can significantly quench UCNPs fluorescence through internal filtration effect (IFE). Under the optimum experimental conditions, the concentration of UA is proportional to the change of UCNPs fluorescence intensity. The linear response range of uric acid concentration is 20-850 渭 and the detection limit is 6.7 渭. More importantly, this method has successfully achieved the determination of uric acid in human serum and urine samples.
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;TP212
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐東勇,臧競存;上轉(zhuǎn)換激光和上轉(zhuǎn)換發(fā)光材料的研究進(jìn)展[J];人工晶體學(xué)報(bào);2001年02期
2 洪廣言;;新型紅外變可見上轉(zhuǎn)換薄膜問世[J];稀土信息;1993年03期
3 石連升;溫猛;錢艷楠;王銳;郝銘;;Yb:Er:Tm:LiTaO_3的上轉(zhuǎn)換發(fā)白光性能研究[J];中國稀土學(xué)報(bào);2011年01期
4 陳奇丹;楊生;;上轉(zhuǎn)換材料的制備及發(fā)展[J];廣東化工;2012年08期
5 周永紅;田玉鵬;吳杰穎;;有機(jī)上轉(zhuǎn)換激光材料研究進(jìn)展[J];化工時(shí)刊;2006年04期
6 張幸林;楊會然;孫會彬;劉淑娟;趙強(qiáng);黃維;;基于三線態(tài)-三線態(tài)湮滅的能量上轉(zhuǎn)換[J];化學(xué)進(jìn)展;2012年10期
7 李鑫德;上轉(zhuǎn)換熒光和激光[J];稀土信息;1997年07期
8 吳長鋒,秦冠仕,秦偉平,陳寶玖,黃世華,劉晃清,趙丹;Er~(3+)/Yb~(3+)共摻雜AlF_3基氟化物玻璃材料的頻率上轉(zhuǎn)換[J];中國稀土學(xué)報(bào);2001年06期
9 涂進(jìn)春;韓星星;李曉天;李楠;黃瑋;王小紅;劉鐘馨;曹陽;;α-NaYF_4:Yb,Er/SBA-15主客體復(fù)合材料的制備及其上轉(zhuǎn)換性能的研究[J];化學(xué)工程師;2012年07期
10 李潤青;喻璽;袁云霞;劉志洪;;基于氧化碳球的上轉(zhuǎn)換熒光傳感新方法檢測銀離子[J];分析科學(xué)學(xué)報(bào);2012年06期
相關(guān)會議論文 前10條
1 嚴(yán)冬;楊正文;竺侃;;A1_2Y_4O_9:Yb,Er反蛋白石中的上轉(zhuǎn)換發(fā)射和顏色調(diào)諧[A];戰(zhàn)略性新興產(chǎn)業(yè)的培育和發(fā)展——首屆云南省科協(xié)學(xué)術(shù)年會論文集[C];2011年
2 臧競存;鄒玉林;劉燕行;單秉瑞;;上轉(zhuǎn)換激光晶體研究進(jìn)展[A];中國硅酸鹽學(xué)會2003年學(xué)術(shù)年會論文摘要集[C];2003年
3 孫雅娟;孔祥貴;張宏;;稀土摻雜上轉(zhuǎn)換納米晶作為表面熒光探針研究[A];第11屆全國發(fā)光學(xué)學(xué)術(shù)會議論文摘要集[C];2007年
4 汪超;程亮;劉莊;;上轉(zhuǎn)換納米晶體癌癥治療的應(yīng)用[A];中國化學(xué)會第28屆學(xué)術(shù)年會第4分會場摘要集[C];2012年
5 葉常青;周宇揚(yáng);梁作芹;王筱梅;;1.新型蒽衍生物受體應(yīng)用高效上轉(zhuǎn)換體系的設(shè)計(jì)合成[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第21分會:光化學(xué)[C];2014年
6 彭桂芳;洪廣言;賈慶新;李有謨;;紅外變可見上轉(zhuǎn)換材料薄膜的研制[A];首屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1992年
7 谷戰(zhàn)軍;田甘;趙玉亮;;熒光上轉(zhuǎn)換納米材料的光譜調(diào)控及其在生物醫(yī)學(xué)中的應(yīng)用[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第35分會:納米生物醫(yī)學(xué)中的化學(xué)問題[C];2014年
8 高偉;李嬌;高當(dāng)麗;田宇;崔敏;孫瑜;閻曉慶;鄭海榮;;顆粒形貌對六方相NaYbF_4:Pr~(3+)納米晶體上轉(zhuǎn)換熒光的影響[A];第七屆全國稀土發(fā)光材料學(xué)術(shù)研討會會議論文摘要集[C];2011年
9 黃淮青;密叢叢;王猛;孫盼;徐淑坤;;磁性稀土摻雜上轉(zhuǎn)換納米發(fā)光顆粒的合成及表征[A];第七屆全國稀土發(fā)光材料學(xué)術(shù)研討會會議論文摘要集[C];2011年
10 李嬌;高偉;高當(dāng)麗;田宇;鄭海榮;;四方相LiYF4:Yb/Er晶體顆粒的合成及上轉(zhuǎn)換熒光研究[A];2011西部光子學(xué)學(xué)術(shù)會議論文摘要集[C];2011年
相關(guān)博士學(xué)位論文 前10條
1 丁亞丹;紅外上轉(zhuǎn)換和吸收納米材料的制備、性能與生物醫(yī)學(xué)應(yīng)用[D];東北師范大學(xué);2015年
2 李亮;基于增強(qiáng)光吸收的DSSC電極修飾與光電性能研究[D];哈爾濱工業(yè)大學(xué);2015年
3 高偉;鑭系離子摻雜氟化物微納晶體的熒光特性研究[D];陜西師范大學(xué);2015年
4 徐淮良;稀土離子摻雜晶體中的上轉(zhuǎn)換過程和電磁感應(yīng)光透明現(xiàn)象的研究[D];吉林大學(xué);2006年
5 梁會娟;稀土摻雜氧化物和氟化物的上轉(zhuǎn)換熒光增強(qiáng)以及光譜研究[D];哈爾濱工業(yè)大學(xué);2011年
6 陳冠英;稀土氧化物和氟化物納米晶上轉(zhuǎn)換熒光光譜的設(shè)計(jì)研究[D];哈爾濱工業(yè)大學(xué);2009年
7 邢麗麗;鈥鐿銩摻雜鈮酸鋰晶體的制備及其上轉(zhuǎn)換白光性能研究[D];哈爾濱工業(yè)大學(xué);2014年
8 楊海貴;稀土摻雜氧化物晶體和氟鋯酸鹽玻璃的上轉(zhuǎn)換及發(fā)光特性[D];吉林大學(xué);2007年
9 李婷;稀土激活的新型氧化物上轉(zhuǎn)換材料研究[D];西北大學(xué);2014年
10 郝樹偉;稀土氟化物微納晶體的可控合成及增強(qiáng)上轉(zhuǎn)換熒光研究[D];哈爾濱工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王靜;細(xì)菌視紫紅質(zhì)—稀土上轉(zhuǎn)換納米粒子生物納米體系的構(gòu)建及其紅外光電響應(yīng)研究[D];西南大學(xué);2015年
2 梅勇;上轉(zhuǎn)換納米晶的制備、調(diào)控和發(fā)光過程研究[D];遼寧大學(xué);2015年
3 韓全澤;稀土離子摻雜氟化物上轉(zhuǎn)換材料的兩步合成及發(fā)光性質(zhì)研究[D];大連海事大學(xué);2015年
4 王寧;稀土摻雜BaLu_2F_8微米晶的可控制備及上轉(zhuǎn)換光發(fā)射性能研究[D];哈爾濱工業(yè)大學(xué);2015年
5 王荷;氧化鈰基上轉(zhuǎn)換發(fā)光粉體的制備、結(jié)構(gòu)與發(fā)光性能研究[D];溫州大學(xué);2015年
6 高方綺;離子摻雜NaGdF_4:Ho~(3+)納米棒上轉(zhuǎn)換熒光的研究[D];陜西師范大學(xué);2015年
7 楊揚(yáng);Er和Yb共摻雜稀土氧化物上轉(zhuǎn)換納米材料的制備及性能研究[D];北京化工大學(xué);2015年
8 張令娥;NaGdF_4基復(fù)合納米載體制備及其腫瘤診斷與治療應(yīng)用研究[D];寧波大學(xué);2015年
9 朱嘉誠;上轉(zhuǎn)換納米材料/石墨烯復(fù)合物的合成及應(yīng)用[D];大連理工大學(xué);2015年
10 王建俊;鉺摻雜NaYF_4納米晶與碲酸鹽玻璃的雙頻上轉(zhuǎn)換性質(zhì)研究[D];哈爾濱工業(yè)大學(xué);2015年
,本文編號:2142088
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2142088.html