形貌可控鈷鎳納米金屬復(fù)合氧化物的設(shè)計制備及超電容性能研究
[Abstract]:The energy problem is an important factor restricting the sustainable development of the society. People have brought a series of environmental pollution problems to the overexploitation and utilization of traditional fossil energy. This has seriously threatened the survival and development of human beings. At the same time, human beings are especially in the development of new clean energy and the storage and transformation of energy. As a new type of energy storage equipment, the supercapacitor has high power density and long service life. However, the high cost and low energy density limit the development of the supercapacitor, and the electrode material is the key to determine the capacity of the supercapacitor. Therefore, the development of new type is cheap and high energy. The electrode materials with high density and high stability are the focus of current research. Based on the electrode materials such as nickel cobalt transition metal elements and multi wall carbon nanotubes, this paper aims to prepare the electrode materials with low cost, high specific capacitance and high stability, and the preparation of various electrode materials by simple synthetic method and material combination. The main research contents are as follows: first, a green synthesis method, a simple preparation process, is used to synthesize the transition metal oxide Co_3O_4 and NiO with the diluted ammonia water as reagents. The catalyst has a typical Faraday pseudacapacitor property. Co_3O_4 is used as an example. The three electrode test system was used in the KOH electrolyte solution of 1mol L-1 with the active substance and acetylene black. The results showed that the electrode material had the best electrochemical performance when the ratio was 8:1, and the Co_3O_4 showed a typical pseudopotential characteristic and the ratio of the current density of the 1 A g~ (-1). The capacitance is 394 F g~ (-1). According to this proportion, the NiO is tested, the specific capacitance reaches 139 F g~ (-1). Second, the two metals of nickel and cobalt are combined to investigate the effect of the synergistic effect between the two kinds of transition metals on the performance of the specific capacitance and the mechanism of action. By controlling the calcining temperature of 150250350 and 450 degrees for 3 hours, X ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to demonstrate the synthesis of two element composite metal (hydrogen) oxides with flake structure. The further study shows that the different calcination temperatures lead to the dehydration of the materials. It has a great influence on the morphology and performance of the material. Through the electrochemical test of the sample materials at different calcination temperatures, it is found that the sample with a calcining temperature of 250oC has excellent performance in both cyclic voltammetry and constant current charge discharge test, and the scanning speed is 10 m. When V S-1 is up to 1296 F g~ (-1), the specific capacitance is up to 1427 F g~ (-1) at the current density of 1 A g~ (-1). Even if the current density increases to 10 A, the specific capacitance is still up to 1270, and the specific capacitance is still up to 89%. In general, the content of nickel and cobalt in the material is larger than that of the supercapacitor. After determining the optimum calcining temperature, we explored the compound ratio of the two elements and prepared the cobalt and nickel at a different molar ratio at the same calcining temperature of 250, and the electrochemical test was carried out. The results showed that the different ratios of nickel and cobalt had a great effect on the capacitance. When the ratio of cobalt and nickel is 2:1, the performance of the material is best. Finally, the electrochemical performance of the sample material after the composite is compared with the single nickel oxide and cobalt oxide synthesized under the same condition. The results show that the electrochemical performance of the composite catalyst has been greatly improved and the stability test results are carried out. It is also shown that after a 3000 ring cycle of 10 A g~ (-1), the specific capacitance attenuates only 7.7% and shows excellent stability. This shows that in the preparation process of hot and high temperature calcination, the composite of nickel and cobalt two greatly improves the capacitance of the material. Third, in order to further improve the electrochemistry of nickel cobalt hydroxide. Properties, we physically compounded the synthesized nickel cobalt hydroxide with MWCNTs, and explored the compound ratio of the two. The two groups were mixed according to the different mass ratio. The results of electrochemical testing showed that the effect was best when the compound ratio was 9:1, and the current density of 1 A g~ (-1) in the KOH electrolyte solution of 1mol L-1. The specific capacitance is up to 1675 F g~ (-1), and the comparison with the composite before the composite shows that the specific capacitance is greatly improved. It shows that the composite of the tubular structure of MWCNTs with the lamellar structure of nickel cobalt hydroxide greatly improves the conductivity of the material and makes the capacitance performance of the material be further improved. The stability test of the material is carried out. It shows that after 3000 cycles, the capacitance retention rate is still 93.2%, showing a good stability.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB383.1;TM53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李越;郝曉剛;王忠德;張忠林;梁鎮(zhèn)海;劉世斌;;單極脈沖電合成聚苯胺膜及其超級電容性能[J];化工學(xué)報;2010年S1期
2 韓丹丹;陳野;張密林;舒暢;張春霞;徐鵬程;;摻釔納米NiO的制備及其超大電容性能研究[J];電化學(xué);2006年03期
3 陳野;韓丹丹;張密林;葛鑫;;摻鑭納米NiO的制備及超大電容性能研究[J];中國稀土學(xué)報;2006年06期
4 趙晶晶;鄭明波;呂洪嶺;李念武;黃毅;張松濤;曹潔明;;低溫?zé)崽幚碇苽涫?氧化鈷及其超級電容性能[J];化學(xué)研究;2012年03期
5 李學(xué)良;何金鏵;徐海龍;;氧化鎳的水熱制備及超電容性能研究[J];金屬功能材料;2011年05期
6 尚秀麗;索隴寧;馮文成;吳海霞;胡中愛;;聚苯胺/聚砜復(fù)合材料的制備及其超級電容性能[J];應(yīng)用化學(xué);2013年09期
7 陳野;舒暢;張春霞;葛鑫;張密林;;氧化鎳的合成及其超級電容性能[J];應(yīng)用化學(xué);2007年08期
8 廖書田;鄭明波;高靜賢;曹謇;楊振江;陳惠欽;曹潔明;陶杰;;一步法合成具有二級孔道的有序介孔碳材料及其超電容性能研究[J];化工新型材料;2009年04期
9 王永文;鄭明波;曹謇;曹潔明;姬廣斌;陶杰;;介孔碳納米纖維制備與超電容性能研究[J];電化學(xué);2010年02期
10 田穎;閻景旺;薛榮;衣寶廉;;電解質(zhì)濃度和溫度對活性炭電容性能的影響(英文)[J];物理化學(xué)學(xué)報;2011年02期
相關(guān)會議論文 前10條
1 孫紅梅;彭亮波;文萃;陳紅雨;舒東;;水鈉錳礦的制備及超級電容性能研究[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
2 孫紅梅;孫振杰;陳紅雨;舒東;;水鈉錳礦的制備及超級電容性能研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
3 程杰;曹高萍;楊裕生;;錳氧化物干凝膠電容性能研究[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年
4 張雅琨;陳亮;李建玲;王新東;葉鋒;楊軍;;不同電解液對聚苯胺電容性能的影響[A];中國化學(xué)會第28屆學(xué)術(shù)年會第10分會場摘要集[C];2012年
5 劉曉霞;孫麗杰;竇玉倩;吳建;;基于無機(jī)-有機(jī)雜化的聚苯胺一維生長調(diào)控及超電容性能研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
6 劉宗懷;楊祖培;王增林;;剝離/組裝技術(shù)制備納米層狀電極材料及其電容性能研究[A];中國化學(xué)會第28屆學(xué)術(shù)年會第10分會場摘要集[C];2012年
7 閆廣超;范磊;郭榮;;介孔碳小球復(fù)合材料的制備及其電容性能研究[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第26分會:膠體與界面[C];2014年
8 李慶偉;李園園;張經(jīng)緯;霍開富;;多級孔泡沫碳材料的制備和電容性能[A];第一屆全國儲能科學(xué)與技術(shù)大會摘要集[C];2014年
9 楊曉青;閆方玉;吳丁財;符若文;;有序炭的氨氣改性及其超電容性能研究[A];第22屆炭—石墨材料學(xué)術(shù)會論文集[C];2010年
10 李學(xué)良;段體蘭;蔣英;李子榮;;有機(jī)胺化物作用下炭氣凝膠的制備與電容性能研究[A];第十三次全國電化學(xué)會議論文摘要集(下集)[C];2005年
相關(guān)重要報紙文章 前6條
1 萬鵬;鉭電容,追求極致性能的選擇[N];電腦報;2008年
2 陜西 張思遠(yuǎn);看電容,“挑”主板[N];電腦報;2004年
3 太子;放眼看元件[N];電腦報;2004年
4 楊樹鋼 孫立新;超級電容 電梯節(jié)能新方向[N];政府采購信息報;2009年
5 青島 孫海善;聯(lián)想電腦常見故障五例[N];電子報;2011年
6 倪永華;讓“剎車”貢獻(xiàn)出電能[N];科技日報;2004年
相關(guān)博士學(xué)位論文 前10條
1 徐江;碳化物衍生碳的形成機(jī)理及其超級電容性能研究[D];燕山大學(xué);2015年
2 萬厚釗;過渡金屬硫化物中空納米結(jié)構(gòu)及其陣列的贗電容特性[D];華中科技大學(xué);2015年
3 朱君秋;含鋯(鉿)活性氧化物的電容性能及其與結(jié)構(gòu)的關(guān)系研究[D];福州大學(xué);2013年
4 薛云;尖晶石型錳系氧化物的合成及超級電容性能研究[D];哈爾濱工程大學(xué);2008年
5 張燕萍;基于納米碳及其金屬氧化物復(fù)合電極的超級電容研究[D];華東師范大學(xué);2010年
6 孫剛偉;炭基超級電容器正負(fù)極不對稱電容行為研究[D];華東理工大學(xué);2012年
7 韓燕;多孔炭材料制備及電容性能研究[D];南開大學(xué);2013年
8 樊楨;電化學(xué)電容器電極材料的制備及其電容性能研究[D];湖南大學(xué);2008年
9 叢文博;聚苯胺及其復(fù)合材料電容性能研究[D];哈爾濱工程大學(xué);2008年
10 蘇凌浩;鈷鋁雙氫氧化物層狀材料的制備、表征及電容性能研究[D];南京航空航天大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 王曉慧;碳納米管和石墨烯負(fù)載二氧化釕復(fù)合電容材料的綠色制備和性能研究[D];華南理工大學(xué);2015年
2 翟晶;聚吡咯及其復(fù)合材料的制備與電容性能研究[D];西南交通大學(xué);2015年
3 彭大春;碳/MnO_x三維復(fù)合納米纖維的制備及其電容性能研究[D];蘭州大學(xué);2015年
4 朱健;MnO_2基及硫化物復(fù)合電容材料的制備與超級電容性能研究[D];南京大學(xué);2016年
5 婁長影;Ir-Ce基氧化物涂層陽極電容性能研究[D];福州大學(xué);2014年
6 郭鳳嬌;聚苯胺及其炭基復(fù)合物的制備和電容性能研究[D];新疆大學(xué);2016年
7 段宇;NiCo_2S_4電極材料及其超電容性能[D];南京理工大學(xué);2016年
8 王維宙;二維層狀Ti_3C_2T_x材料的制備及其電容性能研究[D];哈爾濱工業(yè)大學(xué);2016年
9 高佶;基于超級電容的WSN節(jié)點供電技術(shù)[D];東北石油大學(xué);2016年
10 馬馳;礦物前驅(qū)體中硫酸鹽及單質(zhì)硫?qū)钚蕴砍娙菪袨榈挠绊慬D];揚州大學(xué);2016年
,本文編號:2124981
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2124981.html