天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

氮化硼負(fù)載鈮基添加劑復(fù)合摻雜硼氫化鋰體系的吸放氫性能及其協(xié)同改性機(jī)理

發(fā)布時間:2018-07-15 16:42
【摘要】:氫能作為一種極具發(fā)展?jié)摿Φ睦硐肭鍧嵞茉炊鴱V受關(guān)注,而安全、高效和低成本的儲氫技術(shù)是目前氫能開發(fā)應(yīng)用亟需解決瓶頸技術(shù)。硼氫化鋰(LiBH4)因具有18.5 wt%的質(zhì)量儲氫密度和121 kg H2/m3的體積儲氫密度,成為目前高容量儲氫材料的研究熱點(diǎn)之一。然而,LiBH4熱力學(xué)穩(wěn)定性較高,吸放氫動力學(xué)性能較差,可逆吸氫的條件過于苛刻,嚴(yán)重阻礙了其實用化的進(jìn)程。本文在全面綜述國內(nèi)外LiBH4儲氫材料的研究進(jìn)展的基礎(chǔ)上,研究了六方型氮化硼(h-BN)摻雜、h-BN分別負(fù)載NbCl5和NbH摻雜對LiBH4的儲氫性能的影響規(guī)律,并探索揭示了其改性機(jī)理。將h-BN作為添加劑摻雜至LiBH4體系以改善其吸放氫性能,詳細(xì)研究了h-BN添加量為5mol%、15mol%、30mol%和50 mol%的h-BN摻雜LiBH4體系的放氫動力學(xué)性能。結(jié)果表明:當(dāng)h-BN添加量為30 mol%時,h-BN摻雜LiBH4體系具有最佳綜合儲氫性能,其起始放氫溫度和放氫反應(yīng)活化能分別由未摻雜LiBH4樣品的280℃和198.31 kJ/mol降低至180℃和155.80 kJ/mol;樣品在400℃下完成放氫反應(yīng)所需時間由未摻雜LiBH4樣品的6000分鐘減少至120分鐘。經(jīng)過30 mol% h-BN摻雜改性后,LiBH4能夠在400℃和10 MPa氫壓條件下實現(xiàn)再吸氫,且循環(huán)放氫性能相對穩(wěn)定,第三次放氫容量可達(dá)到6 wt%。進(jìn)一步分析認(rèn)為:h-BN表面N原子上“孤電子對”對LiBH4起到一定的反應(yīng)失穩(wěn)作用,因此h-BN表面的LiBH4率先分解,其分解產(chǎn)物則成為后續(xù)LiBH4分解反應(yīng)的形核中心,降低了LiBH4的分解溫度。為了進(jìn)一步改善LiBH4的儲氫性能,采用NbCl5/h-BN復(fù)合摻雜LiBH4,并對比分析NbCl5/h-BN復(fù)合摻雜LiBH4體系、NbCl5與h-BN單獨(dú)摻雜LiBH4體系的儲氫性能。研究發(fā)現(xiàn):NbCl5/h-BN復(fù)合摻雜LiBH4儲氫性能比NbCl5或h-BN單獨(dú)摻雜LiBH4體系具有更好的放氫動力學(xué)性能。其中,1 mol% NbCl5+30 mol% h-BN復(fù)合摻雜改性的LiBH4樣品在20分鐘內(nèi)能夠釋放出12.19 wt%,為同樣條件下1 mol% NbCl5和30 mol% h-BN單獨(dú)摻雜LiBH4樣品所能釋放氫氣量的17.41和2.61倍。經(jīng)1 mol% NbCl5+30 mol% h-BN復(fù)合摻雜后,LiBH4放氫峰值溫度降低了100℃,放氫反應(yīng)活化能降低122.75 kJ/mol,循環(huán)放氫性能得到明顯改善。進(jìn)一步分析認(rèn)為:NbCl5/h-BN復(fù)合摻雜LiBH4時,在h-BN表面NbCl5與LiBH4發(fā)生反應(yīng)原位生成的納米NbH,起到進(jìn)一步催化改性LiBH4儲氫性能的作用。本文進(jìn)一步采用機(jī)械球磨化學(xué)法研究制備出h-BN負(fù)載5-20 nm的NbH復(fù)合型催化劑,并將其用于催化改性LiBH4儲氫性能。通過添加1 mol% 3NbH@h-BN催化劑,LiBH4的放氫峰值降低到380℃,并且LiBH4能夠在30分鐘完成放氫反應(yīng),其反應(yīng)速率是未摻雜的LiBH4的200倍,LiBH4的循環(huán)放氫性能也得到了進(jìn)一步改善,第三次循環(huán)放氫容量可達(dá)8 wt%;谖⒂^結(jié)構(gòu)分析和放氫動力學(xué)模型計算結(jié)果,我們認(rèn)為其催化改性機(jī)理:NbH@h-BN催化劑在LiBH4放氫反應(yīng)過程起到了異相形核的作用,使LiBH4放氫反應(yīng)避免了臨界晶核形核功,一定程度上降低LiBH4的放氫溫度;納米NbH負(fù)載在h-BN表面,形成穩(wěn)定納米結(jié)構(gòu),能夠為LiBH4放氫反應(yīng)形核提供足夠多的形核中心,從而加快LiBH4放氫反應(yīng)速率。
[Abstract]:Hydrogen energy is widely concerned as an ideal clean energy source with great potential. Safety, high efficiency and low cost hydrogen storage technology is an urgent bottleneck in the development and application of hydrogen energy. Lithium borohydride (LiBH4) has become the current high capacity hydrogen storage material because of the mass hydrogen storage density of 18.5 wt% and the storage hydrogen density of the body of 121 kg H2/m3 However, the thermodynamic stability of LiBH4 is high, the kinetic properties of hydrogen absorption and desorption are poor, the conditions for reversible hydrogen absorption are too harsh, which seriously impede the process of application. On the basis of a comprehensive review of the research progress of LiBH4 hydrogen storage materials at home and abroad, this paper studies the six square boron nitride (h-BN) doping, h-BN load NbCl5 and Nb respectively. The effect of H doping on the hydrogen storage properties of LiBH4 was investigated and its modification mechanism was explored. H-BN was doped into the LiBH4 system to improve the performance of hydrogen absorption and desorption. The hydrokinetics of h-BN addition of 5mol%, 15mol%, 30mol% and 50 mol% h-BN doped LiBH4 system was studied in detail. The results showed that the addition of h-BN was 30. At%, the h-BN doped LiBH4 system has the best comprehensive hydrogen storage performance. The initial hydrogen storage temperature and the activation energy of the hydrogen release reaction are reduced to 180 and 155.80 kJ/mol, respectively, from the 280 and 198.31 kJ/mol of the undoped LiBH4 samples. The time required for the completion of the hydrogen release reaction at 400 centigrade is reduced from 6000 minutes of the undoped LiBH4 sample to 120 minutes. After the doping of mol% h-BN, LiBH4 can re absorb hydrogen at 400 and 10 MPa hydrogen pressure, and the performance of the cyclic hydrogen release is relatively stable, and the capacity of the third discharge can reach 6 wt%.. Further analysis shows that the "solitary electron pair" on the N atom on the h-BN surface has a certain reaction instability to LiBH4, so the LiBH4 of the h-BN surface is the first to decompose. The decomposition product becomes the nucleation center of the subsequent LiBH4 decomposition reaction and reduces the decomposition temperature of LiBH4. In order to further improve the hydrogen storage performance of LiBH4, the NbCl5/h-BN compound doping LiBH4 is adopted and the hydrogen storage properties of NbCl5/h-BN complex doping LiBH4 system are compared and analyzed. The hydrogen storage performance of NbCl5 and h-BN alone doped LiBH4 system is studied. The hydrogen storage performance of Co doped LiBH4 is better than that of NbCl5 or h-BN doped LiBH4 system. Among them, 1 mol% NbCl5+30 mol% h-BN doped LiBH4 samples can release 12.19 wt% in 20 minutes, which is 17. of the amount of hydrogen that can be released by the same condition under the same condition. 41 and 2.61 times. After 1 mol% NbCl5+30 mol% h-BN complex doping, the peak temperature of the LiBH4 dehydrogenation is reduced by 100, and the activation energy of the reaction is reduced by 122.75 kJ/mol, and the performance of the cyclic hydrogen release is obviously improved. Further analysis shows that when NbCl5/h-BN is mixed with LiBH4, the nano NbH, which occurs in the h-BN surface NbCl5 and LiBH4, begins. Further catalyze the hydrogen storage performance of modified LiBH4. This paper further uses mechanical ball milling chemical method to prepare a NbH composite catalyst with h-BN load 5-20 nm, and uses it to catalyze the hydrogen storage performance of the modified LiBH4. By adding 1 mol% 3NbH@h-BN catalyst, the peak dehydrogenation peak of LiBH4 is reduced to 380 C, and LiBH4 can finish in 30 minutes. The reaction rate is 200 times as high as that of the undoped LiBH4, and the performance of the cyclic hydrogen release of LiBH4 has been further improved. The third cycle discharge capacity is up to 8 wt%. based on the microstructure analysis and the calculation of the kinetic model of the hydrogen release. We think that the catalytic modification of the catalyst is that the NbH@h-BN catalyst is in the process of the LiBH4 dehydrogenation process. By the effect of the heterogeneous nucleation, the LiBH4 dehydrogenation reaction avoids the critical nucleation work and reduces the hydrogen release temperature of LiBH4 to a certain extent. The nano NbH load on the surface of h-BN forms a stable nanostructure, which can provide enough nucleation Center for the nucleation of the LiBH4 reactor and accelerate the reaction rate of the LiBH4.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB34

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳偉;李慎蘭;羅剛;韓興博;陳德敏;劉實;楊柯;;載鈀硅藻土的制備及其吸放氫性能研究[J];原子能科學(xué)技術(shù);2010年08期

2 宏存茂,馬蘭,黃季平,林秋竹,韓德剛;鈦錳二元合金的吸放氫性能[J];北京大學(xué)學(xué)報(自然科學(xué)版);1991年02期

3 周惦武;劉金水;盧遠(yuǎn)志;張楚慧;;鎂基儲氫材料的吸放氫性能[J];機(jī)械工程材料;2008年04期

4 程宏輝;李文彪;李超;楊艷能;潘金平;;容量法材料吸放氫性能測試技術(shù)研究進(jìn)展[J];煤炭技術(shù);2014年02期

5 夏羅生;朱樹紅;;Al-LiBH_4體系解氫性能的機(jī)制研究[J];稀有金屬;2013年04期

6 于振興,王爾德,劉祖巖,線恒澤;納米晶復(fù)合物Mg-Ni-Cr_2O_3的吸放氫性能[J];中國有色金屬學(xué)報;2002年04期

7 曉敏;Ti_3Al-Ni合金的吸放氫性能[J];金屬功能材料;2002年05期

8 長征;細(xì)晶富鎂Mg-Ni-Nd合金的吸放氫性能[J];金屬功能材料;2003年01期

9 吳哲;肖學(xué)章;俞凱嶸;范修林;李壽權(quán);陳立新;;鐠、釹氫化物催化劑對NaH/Al復(fù)合物吸放氫性能的影響[J];中國稀土學(xué)報;2010年02期

10 閆霞艷;桑革;朱新亮;;硼氫化物吸放氫性能的研究進(jìn)展[J];材料導(dǎo)報;2011年09期

相關(guān)會議論文 前4條

1 羅道軍;胡偉康;張允什;汪根時;;非晶態(tài)M1-Ni合金薄膜吸放氫性能的研究[A];第二屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1995年

2 陳玉安;林嘉靖;唐霞;;硼的添加對Mg2Ni儲氫合金吸放氫性能的影響[A];2011中國材料研討會論文摘要集[C];2011年

3 季世軍;孫俊才;于志偉;黑祖昆;嚴(yán)立;;球磨條件對Mg_(50)Ni_(50)非晶合金的形成及電化學(xué)吸放氫性能的影響[A];第三屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1998年

4 梁斌斌;何長水;楊洪廣;;CO雜質(zhì)對SiO_2包覆LaNiAl合金吸放氫的影響[A];中國核科學(xué)技術(shù)進(jìn)展報告(第二卷)——中國核學(xué)會2011年學(xué)術(shù)年會論文集第4冊(核材料分卷、同位素分離分卷、核化學(xué)與放射化學(xué)分卷)[C];2011年

相關(guān)博士學(xué)位論文 前5條

1 屠國平;氮化硼負(fù)載鈮基添加劑復(fù)合摻雜硼氫化鋰體系的吸放氫性能及其協(xié)同改性機(jī)理[D];浙江大學(xué);2015年

2 顧堅;硼氫化鈣基儲氫材料的吸放氫性能及其儲氫機(jī)理研究[D];浙江大學(xué);2014年

3 張健;鎂及其合金氫化物吸放氫性能及電子機(jī)制研究[D];湖南大學(xué);2009年

4 龐越鵬;鋁氫化鎂基儲氫材料的合成、吸放氫性能及其機(jī)理[D];浙江大學(xué);2014年

5 湯家俊;表面和界面對Mg-H體系吸放氫性能影響的理論研究[D];華南理工大學(xué);2014年

相關(guān)碩士學(xué)位論文 前9條

1 黎偉;鎂基儲氫材料的改性及其性能研究[D];重慶大學(xué);2015年

2 都胡飛;Ti基催化劑的制備及其對MgH_2和NaAlH_4儲氫材料吸放氫性能的影響[D];浙江大學(xué);2016年

3 梁浩;V-Ti-Cr-Fe合金吸放氫性能的研究[D];四川大學(xué);2006年

4 馬俊;稀土氧化物及孔道材料改性NaAlH_4吸放氫性能的研究[D];中南大學(xué);2011年

5 周海;LiBH_4基儲氫材料的吸放氫性能及其機(jī)理[D];浙江大學(xué);2012年

6 魏佳;微波輻射和添加劑對金屬—氮—?dú)潴w系吸放氫性能的影響[D];上海大學(xué);2014年

7 韓樂園;Mg基材料添加劑對LiBH_4配位氫化物吸放氫性能的影響機(jī)制研究[D];浙江大學(xué);2013年

8 竇濤;Ti-V基固溶體型儲氫合金吸放氫性能的研究[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2006年

9 王麗媛;添加Y對Mg_(17)Al_(12)化合物組織和性能的影響[D];太原理工大學(xué);2014年

,

本文編號:2124717

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2124717.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶37dd5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com