添加堿金屬化合物對(duì)Li-N-H體系儲(chǔ)氫材料動(dòng)力學(xué)性能的增強(qiáng)
[Abstract]:With the increasing demand for energy, it is imminent to find green, environmental and renewable energy instead of the current secondary fossil energy. Hydrogen energy is one of the candidates for the future ideal energy carrier by virtue of its clean environment, large storage and high energy density. The important technical problem is to solve the problem of hydrogen storage. In many different kinds of hydrogen storage materials, "metal nitrogen hydrogen" based hydrogen storage material has become a hot spot for the researchers of hydrogen storage materials in recent years because of its high hydrogen storage capacity, low operating temperature and good dynamic performance. Since Chen Ping and others first proposed L in 2002. After the hydrogen storage system of i-N-H, the system is widely concerned around the world. This article suggests that Li3N can store more than 10 wt% of hydrogen by two consecutive reactions. After that, the LiNH2-LiH system is also widely studied as a classic hydrogen storage system, because it can easily absorb / release 6. through the following reaction. 5 wt% hydrogen. In recent years, some studies have shown that alkali metal potassium compounds, including potassium hydroxide, potassium amino acid, potassium hydroxide, and potassium halide have good catalytic effect in improving the dynamic properties of Li-Mg-N-H hydrogen storage system. Based on this, the alkali metal hydroxide, alkali metal hydride, alkali metal amino group are discussed and discussed. The effect of addition of chemicals on the hydrogen storage properties of Li-N-H system, and the reaction mechanism of the reaction mechanism,.1. alkali metal hydroxide added to the dehydrogenation of hydrogen storage materials in the LiNH2-LiH system, we studied and discussed the effects of the addition of three kinds of hydroxides of LiOH, NaOH, KOH on the dehydrogenation performance of the LiNH2-LiH system, and the determination of three kinds of alkali metal hydrogen oxidation. Among the three kinds of hydroxides, KOH has the most remarkable effect on the dehydrogenation performance of the LiNH2-LiH system. Compared with the wider dehydrogenation curve of the LiNH2-LiH sample, the peak shape becomes sharp after the addition of 5mol% KOH, and the starting temperature of the hydrogen release is reduced by 36, and the peak temperature is reduced by 42. The sign shows that the alkali metal hydroxide can react with LiH to produce the corresponding hydride during the ball milling process, and this phenomenon is the main reason for the enhancement of the dynamic properties of the LiNH2-LiH system added by the alkali metal hydroxide. The addition of.2. alkali metal hydride to the dehydrogenation performance of the hydrogen storage material in the LiNH2-LiH system has been studied and discussed. The dehydrogenation performance of the LiNH2-LiH system with three kinds of alkali metal hydride (LiH, NaH, KH) was added. The results showed that the dehydrogenation performance of the three kinds of alkali metal hydrides had obvious enhancement effect on the dehydrogenation performance of the LiNH2-LiH system, and the LiNH2-LiH system with KH added was the most significant. Compared with the wider dehydrogenation curve of the LiNH2-LiH sample, the addition of 5 mol%KH was added. Then the peak shape becomes sharp, and the starting temperature of the hydrogen release is reduced by 20, and the peak temperature is reduced by 30. Through the mechanism, we conclude that the dynamic performance of the KH adding LiNH2-LiH system is enhanced because the reaction between KH and NH3 has a catalytic effect and accelerates the dehydrogenation reaction. As for the non added LiNH2-LiH samples, the LiNH2-LiH samples added by 5 mol%KH showed the ideal cyclic properties of the.3. base metal aminoides to enhance the dehydrogenation performance of the LiNH2-LiH system hydrogen storage materials. We discussed the dehydrogenation properties of the LiNH2-LiH system of adding three kinds of alkali metal aminoides (LiNH2, NaNH2, KNH2). The results show that only KNH2 in the three alkali metal amino groups has obvious enhancement effect on dehydrogenation performance of LiNH2-LiH system. Compared with the wider dehydrogenation curve of LiNH2-LiH sample, the peak shape becomes sharp after adding 5 mol%KNH2, and the starting temperature of the hydrogen release is reduced by 40, and the peak temperature is reduced by 34. In the ball milling process, KNH2 reacts with LiH to produce KH, which is the main reason for the improvement of LiNH2-LiH dehydrogenation kinetics for adding 5mol% KNH2. Finally, in the cycle performance test, the LiNH2-LiH samples with 5 mol% KNH2, compared to the non added LiNH2-LiH samples, show the ideal cycle performance.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB34
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳峻青;周仕學(xué);王振華;呂英海;;鎳對(duì)鎂碳復(fù)合儲(chǔ)氫材料性能的影響[J];礦冶工程;2008年04期
2 朱敏;陳立新;雷永泉;陳軍;車成衛(wèi);;儲(chǔ)氫材料領(lǐng)域國(guó)家自然科學(xué)基金項(xiàng)目集團(tuán)管理回顧[J];中國(guó)科學(xué)基金;2009年02期
3 ;大連化物所儲(chǔ)氫材料研究獲進(jìn)展[J];河南化工;2009年06期
4 范士鋒;;金屬儲(chǔ)氫材料研究進(jìn)展[J];化學(xué)推進(jìn)劑與高分子材料;2010年02期
5 ;吸附儲(chǔ)氫材料研究獲進(jìn)展[J];化工科技市場(chǎng);2010年05期
6 蔣利軍;;稀土儲(chǔ)氫材料現(xiàn)狀及展望[J];四川稀土;2010年01期
7 ;美研制出新型液態(tài)儲(chǔ)氫材料[J];化工中間體;2011年12期
8 王洪晶;林秀梅;車文實(shí);;儲(chǔ)氫材料的研究進(jìn)展[J];中國(guó)科技投資;2012年26期
9 林江;氫化物儲(chǔ)氫材料及其熱泵和空調(diào)的研究進(jìn)展[J];新技術(shù)新工藝;2002年01期
10 張文叢,房文斌,羅念寧,于振興,王爾德;儲(chǔ)氫材料性能測(cè)試裝置設(shè)計(jì)及應(yīng)用[J];中國(guó)有色金屬學(xué)報(bào);2003年03期
相關(guān)會(huì)議論文 前10條
1 崔明功;李燕月;劉吉平;付松;;金屬儲(chǔ)氫材料研究進(jìn)展[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊(cè))[C];2006年
2 周仕學(xué);張同環(huán);張鳴林;張彩娥;陸帥帥;趙培偉;張文才;;氣氛對(duì)鎂基儲(chǔ)氫材料與噻吩反應(yīng)的影響[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第3分冊(cè))[C];2010年
3 張鳴林;楊敏建;張同環(huán);張光偉;陳海鵬;;鉬在反應(yīng)球磨制備鎂基儲(chǔ)氫材料中的作用[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第6分冊(cè))[C];2010年
4 高萍;劉吉平;崔明功;付松;張娜;;儲(chǔ)氫材料初探[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊(cè))[C];2006年
5 羅曉東;張靜;靳曉磊;胡賓賓;;儲(chǔ)氫材料的研究現(xiàn)狀與進(jìn)展[A];2007高技術(shù)新材料產(chǎn)業(yè)發(fā)展研討會(huì)暨《材料導(dǎo)報(bào)》編委會(huì)年會(huì)論文集[C];2007年
6 雷桂芹;周仕學(xué);;碳種類對(duì)鎂碳復(fù)合儲(chǔ)氫材料性能的影響[A];第十三屆全國(guó)粉體工程及礦產(chǎn)資源高效開發(fā)利用研討會(huì)論文專輯[C];2007年
7 劉嘯鋒;馬光;李銀娥;姜婷;鄭晶;;儲(chǔ)氫材料的研究與進(jìn)展[A];第二屆中國(guó)儲(chǔ)能與動(dòng)力電池及其關(guān)鍵材料學(xué)術(shù)研討與技術(shù)交流會(huì)論文集[C];2007年
8 孫立賢;張箭;宋莉芳;劉淑生;姜春紅;司曉亮;焦成麗;王爽;徐芬;李芬;;新型儲(chǔ)氫材料的熱力學(xué)與動(dòng)力學(xué)研究[A];中國(guó)化學(xué)會(huì)第十五屆全國(guó)化學(xué)熱力學(xué)和熱分析學(xué)術(shù)會(huì)議論文摘要[C];2010年
9 王平;;以車載儲(chǔ)氫為目標(biāo)的儲(chǔ)氫材料研究進(jìn)展[A];第二屆中國(guó)儲(chǔ)能與動(dòng)力電池及其關(guān)鍵材料學(xué)術(shù)研討與技術(shù)交流會(huì)論文集[C];2007年
10 周仕學(xué);楊敏建;雷桂芹;呂英海;王斌;;微晶碳用于制備鎂基儲(chǔ)氫材料的研究[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年
相關(guān)重要報(bào)紙文章 前9條
1 記者 姚耀;氨硼烷化合物成儲(chǔ)氫材料新星[N];中國(guó)化工報(bào);2009年
2 記者 劉霞;美研制出硼—氮基液態(tài)儲(chǔ)氫材料[N];科技日?qǐng)?bào);2011年
3 戴年珍 張珍麗 趙永江;儲(chǔ)氫材料的專利信息分析和利用[N];中國(guó)知識(shí)產(chǎn)權(quán)報(bào);2012年
4 本報(bào)記者 柳方秀;讓“明日之花”盛開得更加艷麗[N];中國(guó)冶金報(bào);2010年
5 陶加;吸附儲(chǔ)氫材料研究獲進(jìn)展[N];中國(guó)化工報(bào);2010年
6 本報(bào)記者 李宏乾;氫儲(chǔ)運(yùn):多條途徑共同發(fā)展[N];中國(guó)化工報(bào);2011年
7 王玲;大連化物所儲(chǔ)氫材料研究獲進(jìn)展[N];中國(guó)化工報(bào);2009年
8 馮衛(wèi)東;美用納米重力計(jì)發(fā)掘新儲(chǔ)氫材料[N];科技日?qǐng)?bào);2008年
9 羽佳;儲(chǔ)氫材料 21世紀(jì)新能源的“儲(chǔ)蓄所”[N];中國(guó)有色金屬報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 宋云;輕質(zhì)儲(chǔ)氫材料的改性研究[D];復(fù)旦大學(xué);2014年
2 陳曉偉;硼氮基儲(chǔ)氫材料放氫機(jī)理及改性研究[D];復(fù)旦大學(xué);2014年
3 劉光;新型高容量鎂基復(fù)合儲(chǔ)氫材料的制備及性能研究[D];南開大學(xué);2013年
4 董琪;基于金屬有機(jī)碳化物的儲(chǔ)氫材料的理論研究[D];吉林大學(xué);2010年
5 楊敏建;鎂基儲(chǔ)氫材料的制備及對(duì)二硫化碳、噻吩的加氫性能研究[D];山東科技大學(xué);2010年
6 鄭時(shí)有;輕質(zhì)儲(chǔ)氫材料的研究[D];復(fù)旦大學(xué);2009年
7 馬建麗;兩類無機(jī)儲(chǔ)氫材料的制備、表征及其儲(chǔ)氫性能研究[D];南開大學(xué);2012年
8 邵杰;硼氫化鋰基儲(chǔ)氫材料的優(yōu)化改性及其機(jī)理研究[D];浙江大學(xué);2015年
9 吳峻青;納米碳復(fù)合儲(chǔ)氫材料制備及儲(chǔ)氫機(jī)理的研究[D];山東科技大學(xué);2008年
10 郭軍;儲(chǔ)氫材料的第一性原理研究[D];中南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 趙汪;金屬氮?dú)浠飶?fù)合材料儲(chǔ)氫循環(huán)性能研究[D];北京有色金屬研究總院;2015年
2 朱和鵬;LiBH_4基復(fù)合儲(chǔ)氫材料改性研究[D];浙江大學(xué);2014年
3 孫立芹;Mg基儲(chǔ)氫材料釋氫性能的摻雜效應(yīng)及機(jī)理[D];湘潭大學(xué);2015年
4 葛俊;添加堿金屬化合物對(duì)Li-N-H體系儲(chǔ)氫材料動(dòng)力學(xué)性能的增強(qiáng)[D];揚(yáng)州大學(xué);2015年
5 張旭剛;新型金屬氮化物儲(chǔ)氫材料的性能[D];北京有色金屬研究總院;2011年
6 楊敏建;儲(chǔ)氫材料中金屬作用機(jī)理的研究[D];山東科技大學(xué);2007年
7 張同環(huán);鎂基儲(chǔ)氫材料與噻吩反應(yīng)影響因素的研究[D];山東科技大學(xué);2011年
8 劉慧;新型輕質(zhì)元素儲(chǔ)氫材料儲(chǔ)放氫性能研究[D];長(zhǎng)沙理工大學(xué);2013年
9 劉華;輕金屬儲(chǔ)氫材料的結(jié)構(gòu)和電子性質(zhì)的理論研究[D];北京化工大學(xué);2010年
10 譚琦;碳鎂儲(chǔ)氫材料控制性制備及放氫動(dòng)力學(xué)的研究[D];山東科技大學(xué);2009年
,本文編號(hào):2121190
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2121190.html