天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

鐵系納米材料的制備及吸附與催化性能研究

發(fā)布時(shí)間:2018-06-30 09:28

  本文選題:納米粒子 + Fe3O4。 參考:《新疆大學(xué)》2015年碩士論文


【摘要】:鐵系納米材料是一種重要的過(guò)渡金屬納米材料,因其價(jià)格低廉、對(duì)環(huán)境友好、賦有磁性,在催化、氣敏材料、靶向治療、鋰離子電池和磁性材料等領(lǐng)域具有潛在的應(yīng)用。但和其他金屬材料與貴金屬相比,鐵系納米材料的缺點(diǎn)是其活性相對(duì)較低。由前人的研究表明,通過(guò)改變納米材料的結(jié)構(gòu),控制納米粒子的形貌,增大納米粒子的比表面積等措施可提高其活性。因此,可以通過(guò)不同的設(shè)計(jì)與合成方法,制備出具有不同大小、組成、形貌、結(jié)構(gòu)的鐵系納米材料,使其具有獨(dú)特性質(zhì),從而將其應(yīng)用于重要領(lǐng)域。本論文旨在采用合理的設(shè)計(jì)路線,通過(guò)溶劑熱法、程序升溫滲氮法、兩相法以及熔融鹽焙燒等方法,制備出不同結(jié)構(gòu)和組成的鐵系納米材料,并對(duì)其性能進(jìn)行了研究。論文主要研究成果如下:首先,采用溶劑熱法得到Fe3O4納米球,然后在磁性粒子表面通過(guò)原位生長(zhǎng)過(guò)程,得到Fe3O4@Ni(OH)2核殼分層納米材料,最后通過(guò)低溫焙燒過(guò)程使Fe3O4@Ni(OH)2前驅(qū)體分解為磁性Fe3O4@NiO核殼結(jié)構(gòu)納米材料。制得的產(chǎn)物用X射線粉末衍射(XRD)、元素分析(EDS)、掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)進(jìn)行了表征。TEM結(jié)果表明Fe3O4磁心直徑約為250 nm,NiO殼層厚度約為30 nm。將Fe3O4@NiO核殼結(jié)構(gòu)納米粒子作為磁性可分離的吸附劑,用于剛果紅(CR)染料的吸附,結(jié)果表明,對(duì)CR的最大吸附容量可達(dá)128.9 mg/g。此外,將Fe3O4@NiO納米粒子用于催化苯乙烯環(huán)氧化反應(yīng),也展現(xiàn)了非常優(yōu)異的催化性能,其中選擇性、轉(zhuǎn)化率和產(chǎn)率分別可達(dá)到100%,99%,99%。制得的Fe3O4@NiO催化劑也具有良好的循環(huán)性能,在外加磁場(chǎng)下很容易被回收利用,經(jīng)過(guò)5次循環(huán)后,其催化活性并未明顯降低。其次,通過(guò)對(duì)FeCl3·6H2O強(qiáng)迫水解得到梭形?-FeOOH納米粒子,并以此為前驅(qū)體,經(jīng)過(guò)正硅酸乙酯氨解包硅后得到?-FeOOH@SiO2納米材料,再通過(guò)程序升溫滲氮法得到混合有Fe、Fe3N、Fe4N物相的磁性FexNy@SiO2核殼結(jié)構(gòu)納米粒子。此外,直接將?-FeOOH前驅(qū)體氮化、用堿液刻蝕FexNy@SiO2表面硅層、修改后氮化方法,還制得了不同尺寸和形貌的微米氮化鐵粒子(M-FexNy)、納米氮化鐵粒子(N-FexNy)和微米氮化四鐵粒子(Fe4N)。將得到樣品用于苯乙烯環(huán)氧催化反應(yīng),實(shí)驗(yàn)結(jié)果表明FexNy@SiO2核殼結(jié)構(gòu)納米粒子表現(xiàn)出優(yōu)異的催化性能,且容易分離和回收。對(duì)FexNy@SiO2納米粒子進(jìn)行了循環(huán)性能實(shí)驗(yàn),在循環(huán)5次后,其對(duì)苯乙烯環(huán)氧的催化性能也未明顯降低。最后,以梭形?-FeOOH納米粒子為前驅(qū)體,通過(guò)兩相法及不同溫度熔融鹽焙燒法得到兩種磁性可分離的Fe3O4/C納米材料。對(duì)產(chǎn)物進(jìn)行了XRD、EDS、TEM等表征,結(jié)果表明合成的Fe3O4納米粒子近似球形,直徑約100 nm,且均勻地負(fù)載在碳膜上。將兩種Fe3O4/C納米復(fù)合物用于吸附CR性能研究,實(shí)驗(yàn)結(jié)果表明,兩者均有較好的吸附性能,對(duì)剛果紅的最大吸附容量分別為107.1 mg/g和94.8 mg/g。通過(guò)對(duì)吸附結(jié)果的線性擬合,表明兩種吸附劑對(duì)CR的吸附過(guò)程均較好的符合Langmuir吸附模型。而且,這種磁性納米復(fù)合材料也展現(xiàn)了很好的磁可分離特性,在水處理方面擁有潛在的應(yīng)用前景。
[Abstract]:Iron based nanomaterials are one of the most important transition metal nanomaterials. They have potential applications in the fields of catalysis, gas sensitive materials, targeting therapy, lithium ion batteries and magnetic materials because of their low price, environment friendly and magnetic properties. But compared with other metal materials and precious gold, the disadvantages of the iron based nanomaterials are their relative activity. It has been shown by previous studies that by changing the structure of nanomaterials, controlling the morphology of nanoparticles and increasing the specific surface area of the nanoparticles, the activity of the nanoparticles can be improved. Therefore, iron based nanomaterials with different sizes, composition, shape and structure can be prepared by different design and synthesis methods, so that they have unique properties. The purpose of this paper is to apply it to important fields. The purpose of this paper is to prepare iron based nanomaterials with different structures and compositions by means of solvothermal method, temperature programmed nitriding, two-phase method and molten salt roasting. The main research results of this paper are as follows: first, solvothermal method is used. The Fe3O4 nanospheres were obtained, then the Fe3O4@Ni (OH) 2 nuclear shell layered nanomaterials were obtained on the surface of the magnetic particles. Finally, the Fe3O4@Ni (OH) 2 precursor was decomposed into magnetic Fe3O4@NiO nuclear shell nanostructures by the process of low temperature calcination. The obtained products were obtained by X ray powder diffraction (XRD), elemental analysis (EDS), and scanning electron display. Micromirror (SEM) and transmission electron microscopy (TEM) were used to characterize.TEM. The results showed that the diameter of Fe3O4 core was about 250 nm, and the thickness of NiO shell was about 30 nm., and Fe3O4@NiO core shell nanoparticles were used as magnetic separable adsorbents for the adsorption of Congo red (CR) dyes. The results showed that the maximum adsorption capacity of CR was 128.9 mg/g.. Fe3O4@NiO nanoparticles are used to catalyze the epoxidation of styrene, and also exhibit excellent catalytic properties. The selectivity, conversion and yield can reach 100%, 99%, and 99%., respectively. The Fe3O4@NiO catalyst also has good cycling performance. It is easy to be recycled under the applied magnetic field. After 5 cycles, the catalytic activity of the catalyst is improved. Second, the fusiform -FeOOH nanoparticles were obtained by forced hydrolysis of FeCl3. 6H2O, which was used as precursor and obtained by ammonia solution of tetraethyl orthosilicate to obtain -FeOOH@SiO2 nanomaterials, and then the magnetic FexNy@SiO2 core shell structure nanoparticles mixed with Fe, Fe3N and Fe4N phase were obtained by the method of temperature programmed nitriding. -FeOOH precursor nitridation, etching FexNy@SiO2 surface silicon layer with alkaline solution, modified nitriding method, and making different sizes and morphologies of micron iron nitride particles (M-FexNy), nano iron nitride particles (N-FexNy) and micron nitriding four iron particles (Fe4N). The catalytic reaction of the samples to styrene epoxy will be obtained. The experimental results show that the FexNy@SiO2 core shell is used. The structure nanoparticles showed excellent catalytic performance and easy to be separated and recovered. The cyclic properties of FexNy@SiO2 nanoparticles were tested. After 5 cycles, the catalytic properties of styrene epoxy were not significantly reduced. Finally, the spindle shape -FeOOH nanoparticles were used as precursors, and the two phase method and different temperature molten salt roasting method were obtained. Two kinds of Magnetic Separable Fe3O4/C nanomaterials were obtained. The products were characterized by XRD, EDS and TEM. The results showed that the synthesized Fe3O4 nanoparticles were approximately spherical, about 100 nm in diameter and uniformly loaded on the carbon film. Two kinds of Fe3O4/C nanocomposites were used to adsorb CR properties. The experimental results showed that both of them had good adsorption properties, and the results showed that both of them had good adsorption properties. The maximum adsorption capacity of Congo red is 107.1 mg/g and 94.8 mg/g. respectively through the linear fitting of the adsorption results. It shows that the adsorption process of two adsorbents to CR is better in conformity with the Langmuir adsorption model. Moreover, the Magnetic Nanocomposites also exhibit good magnetic separation properties and have potential applications in water treatment. View.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王敏;王峰;;氧化物負(fù)載的納米金屬催化劑的活性位本質(zhì)和結(jié)構(gòu)[J];催化學(xué)報(bào);2014年04期

2 林凱;辛嘉英;陳丹丹;張?zhí)m軒;王艷;夏春谷;;負(fù)載型納米金催化葡萄糖氧化研究進(jìn)展[J];分子催化;2014年01期

3 張召艷;王英;李嫻;戴維林;;苯甲醇氧化制苯甲酸鈉反應(yīng)中金鈀雙金屬催化劑的協(xié)同效應(yīng)[J];催化學(xué)報(bào);2014年11期

4 周靜;柏任流;王玨;;沉積-沉淀法制備金催化劑用于CO催化氧化[J];精細(xì)化工;2013年10期

5 邵鴻飛;冀克儉;劉元俊;鄧衛(wèi)華;趙曉剛;周彤;高巖立;;鋁柱撐蒙脫石負(fù)載納米金催化劑的結(jié)構(gòu)表征及其CO催化活性研究[J];化學(xué)分析計(jì)量;2014年04期

6 趙濤;史智鋒;賀慧;董蔚;張?bào)K;;單分散Au、TiO_2和Au/TiO_2量子點(diǎn)的制備及催化性能研究[J];化學(xué)研究與應(yīng)用;2015年02期

7 楊麗霞;劉娜;趙斯琴;長(zhǎng)山;;改性蒙脫土對(duì)剛果紅的吸附性能研究[J];化工礦物與加工;2015年02期

8 LIU Bingjie;WANG Dongfeng;YU Guangli;MENG Xianghong;;Adsorption of Heavy Metal Ions,Dyes and Proteins by Chitosan Composites and Derivatives-A Review[J];Journal of Ocean University of China;2013年03期

9 張yN;劉有智;袁志國(guó);;密閉空間一氧化碳凈化技術(shù)探討[J];天然氣化工(C1化學(xué)與化工);2014年02期

10 于湘;郭林;;負(fù)載型Pd催化劑載體的研究進(jìn)展[J];中國(guó)印刷與包裝研究;2014年03期

相關(guān)會(huì)議論文 前1條

1 石磊;苗雨欣;鄧高明;陸安慧;;Au/MnO_2/Al_2O_3納米結(jié)構(gòu)調(diào)控及其PROX性能研究[A];第18屆全國(guó)分子篩學(xué)術(shù)大會(huì)論文集(下)[C];2015年

相關(guān)博士學(xué)位論文 前10條

1 鄧輝;吸附法制備Au/CeO_2/SiO_2催化劑及苯氧化過(guò)程的研究[D];浙江大學(xué);2012年

2 劉雨溪;3DOM LaMnO_3,Au/3DOM La_(0.6)Sr_(0.4)MnO_3,,Au/meso Co_3O_4和3DOM BiVO_4催化劑可控制備及有機(jī)污染物氧化的催化性能研究[D];北京工業(yè)大學(xué);2013年

3 婁陽(yáng);Co_3O_4基催化劑低溫催化CO氧化的化學(xué)反應(yīng)過(guò)程及其性能的研究[D];華東理工大學(xué);2014年

4 李東瑋;納米多孔金屬材料在氣相催化方面的應(yīng)用[D];山東大學(xué);2014年

5 賈傳義;環(huán)境/能源催化反應(yīng)中催化劑表面微結(jié)構(gòu)對(duì)其活性的影響機(jī)制研究[D];山東大學(xué);2014年

6 蔡彬;新型氧化錫微納單晶場(chǎng)效應(yīng)晶體管的設(shè)計(jì)及其在氣體傳感領(lǐng)域中的應(yīng)用[D];東北師范大學(xué);2014年

7 姚永林;超細(xì)FeNi合金粉熱分解法制備及其吸波性能研究[D];中南大學(xué);2014年

8 何林;基于多相氫轉(zhuǎn)移策略的綠色新催化體系研究[D];復(fù)旦大學(xué);2012年

9 商城;勢(shì)能面搜索新方法的發(fā)展及其在復(fù)雜非均相催化反應(yīng)研究中的應(yīng)用[D];復(fù)旦大學(xué);2013年

10 畢慶員;基于甲酸/甲酸鹽制氫及儲(chǔ)氫多相催化體系的構(gòu)建[D];復(fù)旦大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 梅偉民;氧化鈷(II,III)納米結(jié)構(gòu)的制備及其電化學(xué)、CO催化氧化性能研究[D];浙江大學(xué);2013年

2 玉美;納米SiO_2,納米TiO_2及介孔TiO_2/γ-Fe_2O_3復(fù)合材料的制備及其性能研究[D];內(nèi)蒙古師范大學(xué);2013年

3 劉春艷;金團(tuán)簇的結(jié)構(gòu)、光譜和催化性質(zhì)的理論研究[D];湘潭大學(xué);2013年

4 程丁玲;稀土金屬釤與鈰在Al_2O_3表面吸附和氧化的光電子能譜研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年

5 張yN;超重力吸收法脫除CO的基礎(chǔ)研究[D];中北大學(xué);2014年

6 黃學(xué)敏;Au-Ag合金納米顆粒的制備與催化應(yīng)用[D];上海大學(xué);2013年

7 占美清;鋅酞菁的溶劑熱制備及其形貌與可見光催化性能研究[D];浙江理工大學(xué);2014年

8 梁小明;金屬鈷納米粒子和鈷鎳合金的合成及其在水處理方面的應(yīng)用研究[D];吉林大學(xué);2014年

9 孫銘君;磁性納米材料合成及其對(duì)有機(jī)染料剛果紅的吸附性能研究[D];吉林大學(xué);2014年

10 吳平;負(fù)載型Fe-Pt/Al_2O_3催化劑的制備及CO反應(yīng)機(jī)理的研究[D];吉林大學(xué);2014年



本文編號(hào):2085818

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2085818.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7ef80***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com