基于生物質(zhì)的納米孔碳復(fù)合材料的制備及電容性能研究
發(fā)布時(shí)間:2018-06-27 09:51
本文選題:生物質(zhì)多孔碳 + 超級(jí)電容器。 參考:《上海交通大學(xué)》2015年博士論文
【摘要】:近年來(lái),隨著工業(yè)化的快速發(fā)展,人口數(shù)量的急劇增加和礦石燃料(煤、石油和天然氣等)的不斷消耗,能源短缺和環(huán)境污染等問題日益嚴(yán)重。因此,清潔高效地利用能源成為解決上述問題的關(guān)鍵。超級(jí)電容器是一種新型的電能存儲(chǔ)器件,具有功率密度高(10kWkg~(-1))、循環(huán)壽命長(zhǎng)(100,000次循環(huán))及倍率性能優(yōu)越等特性,在工業(yè)、運(yùn)輸業(yè)和軍事上得到廣泛應(yīng)用。超級(jí)電容器主要有兩種類型,即雙電層超級(jí)電容器和贗電容超級(jí)電容器。前者利用離子電荷的物理吸附存儲(chǔ)電能,其中電極材料主要是碳材料,如活性炭,石墨烯和碳納米管等。它們具有優(yōu)異的導(dǎo)電性,因此,其倍率性能優(yōu)異;但受限于其比表面積,其比電容較小(300Fg~(-1)),能量密度也較小(10Whkg~(-1))。贗電容超級(jí)電容器主要過渡金屬化合物,利用過渡金屬的價(jià)態(tài)可變化性能(可逆氧化還原反應(yīng))實(shí)現(xiàn)電荷的存儲(chǔ)與釋放。贗電容電極材料比碳材料具有更高的比電容和能量密度,但是其較差的導(dǎo)電性降低了其倍率性能和功率密度,此外其循環(huán)性能也比碳材料差。因此,基于以上兩類電容器電極材料的性能,研制高性能的碳基復(fù)合材料成為目前研究的熱點(diǎn)。盡管新興的石墨烯和碳納米管等得到很多關(guān)注,但其電容性能與活性炭接近,且其制作成本遠(yuǎn)高于活性炭,故而現(xiàn)階段尚不能實(shí)現(xiàn)大規(guī)模的工業(yè)化生產(chǎn)。并且,它們本身易發(fā)生堆疊現(xiàn)象,尤其在復(fù)合贗電容材料后,比表面積大幅下降,造成雙電層效應(yīng)隨之亦大幅降低,不利于雙層電容器電荷存儲(chǔ)效應(yīng)與贗電容效應(yīng)的有效發(fā)揮。鑒于此,一方面為了尋求可大規(guī)模產(chǎn)業(yè)化生產(chǎn)并具有優(yōu)異電容特性的碳基電極材料,另一方面為實(shí)現(xiàn)在此碳基上與其它贗電容納米功能相復(fù)合以進(jìn)一步提高電容特性的目的,本論文開展了基于生物質(zhì)碳材料的納米復(fù)合電極的制備及電容性能研究。自然界歷經(jīng)億萬(wàn)年,進(jìn)化了數(shù)目繁多的多形態(tài)、多尺度、多維數(shù)的生物質(zhì)材料。這些生物質(zhì)為人類簡(jiǎn)易、廉價(jià)獲取碳材料提供了豐富的資源。經(jīng)過簡(jiǎn)單的碳化與活化工藝制備獲得的生物質(zhì)納米孔碳基,不僅生產(chǎn)成本低,并且由于其本身具有的多孔結(jié)構(gòu)和表面特性,即使在復(fù)合納米功能相之后仍能發(fā)揮部分雙電層效應(yīng);大的比表面積可為功能相離子的復(fù)合提供更多的沉積位點(diǎn),促進(jìn)復(fù)合相在碳基上的分散型分布,最終提高復(fù)合材料整體的電容性能。本文充分利用生物質(zhì)納米孔碳作為基底,原位引入納米功能相,制備出基于生物質(zhì)碳的先進(jìn)多孔碳復(fù)合電極材料。重點(diǎn)研究了生物質(zhì)碳表面復(fù)合功能相的制備工藝,圍繞具有層、顆粒、管等典型形貌的納米功能相,研究了雙層電容的碳基與贗電容功能相的耦合效應(yīng)。主要內(nèi)容和結(jié)論如下:一、生物質(zhì)納米孔碳表面原位復(fù)合納米金屬顆粒工藝研究不同生物質(zhì)制備的納米孔碳材料存在表面物理、化學(xué)性質(zhì)及微觀結(jié)構(gòu)上的較大差異。因此,甄選合適生物質(zhì)碳基和復(fù)合工藝方法是實(shí)現(xiàn)生物質(zhì)碳與納米功能相復(fù)合的重點(diǎn)。本文選取四種生物質(zhì)納米孔碳,分別采用浸漬法、水浴沉積沉淀法和微波沉積沉淀法研究了Co納米顆粒在生物質(zhì)碳表面的沉積狀況,最終確立了具有大孔容、均一化孔徑分布和大量含氧官能團(tuán)的竹質(zhì)納米孔碳作為生物質(zhì)碳基,通過微波沉積沉淀法可實(shí)現(xiàn)Co納米顆粒在碳表面上的均勻沉積。研究發(fā)現(xiàn),選取Co(NO_3)_2·6H_2O為前驅(qū)離子溶液,溶液濃度3.4mM、與尿素溶液濃度配比1:10、超聲時(shí)間3min、使用2450MHz的700W低溫微波加熱反應(yīng)12min為最優(yōu)微波沉積沉淀實(shí)驗(yàn)參數(shù),可在納米孔竹碳上實(shí)現(xiàn)分散性很高的納米金屬顆粒功能相的復(fù)合,為下步二元、三元生物質(zhì)多維納米孔碳雜化材料的制備奠定實(shí)驗(yàn)基礎(chǔ)。二、納米薄片Co(OH)_2/生物質(zhì)納米孔碳納米復(fù)合材料電極制備及性能研究為了提高薄片Co(OH)_2的活性物質(zhì)表面利用率,本文通過快速、廉價(jià)有效的微波沉積法將花狀α-Co(OH)_2納米片原位生長(zhǎng)于生物質(zhì)納米孔碳基上,應(yīng)用于超級(jí)電容器。碳基的存在促進(jìn)了具有贗電容特性的Co(OH)_2納米片的分散,使得Co(OH)_2納米片層厚度明顯降低,平均納米片層厚度僅為5-9nm左右;并且,碳基的多孔結(jié)構(gòu)在充放電中為電荷轉(zhuǎn)移提供了更加充足的通道。這個(gè)雜化結(jié)構(gòu)的比電容可在0.1Ag~(-1)下達(dá)到345Fg~(-1),并可在高電流密度5Ag~(-1)時(shí)保持284Fg~(-1)。另外,由于構(gòu)建的雜化結(jié)構(gòu)穩(wěn)定性較好,使得復(fù)合材料在5Ag~(-1)時(shí)充放電5000次后比電容的容量衰減僅為14%。這個(gè)優(yōu)良的電化學(xué)性能歸因于多孔碳基和贗電容特性的Co(OH)_2納米片之間的協(xié)同作用。三、低溫快速合成高度分散、尺寸可控的Co_3O_4顆粒/生物質(zhì)納米孔炭復(fù)合材料電極制備及性能研究為了提高活性物質(zhì)的利用率,降低復(fù)合的納米功能相對(duì)碳基表面的堵塞,使得贗電容效應(yīng)和碳基的雙電層電荷存儲(chǔ)效應(yīng)能夠充分發(fā)揮,本文研究了Co_3O_4納米級(jí)顆粒與生物質(zhì)納米孔碳的復(fù)合。應(yīng)用快速的微波沉積沉淀法在活性竹炭上負(fù)載均勻分布的Co_3O_4納米顆粒并應(yīng)用于超級(jí)電容器。Co_3O_4納米顆粒尺寸可通過碳基的不同預(yù)氧化處理控制在幾至幾十納米之間。碳基的雙電層電容和錨定的Co_3O_4納米顆粒的贗電容性能協(xié)同作用決定了雜化材料的電化學(xué)性能,其中,Co_3O_4納米顆粒的尺寸和負(fù)載量影響著Co_3O_4納米顆粒在雜化材料中的贗電容貢獻(xiàn)。當(dāng)納米顆粒平均尺寸約為7nm且負(fù)載量16.4wt%時(shí),復(fù)合材料在6M的KOH中0.1Ag~(-1)時(shí)測(cè)試的比電容值可達(dá)491Fg~(-1)。另外,合成的二元雜化材料在高電流密度5Ag~(-1)時(shí)循環(huán)5000次充放電后的比電容衰減僅為11%,表明了Co_3O_4納米顆粒與碳基之間較強(qiáng)的結(jié)合力。四、多級(jí)三元碳納米管/納米金屬/生物質(zhì)納米孔碳雜化復(fù)合電極材料的制備及性能研究為了進(jìn)一步提高材料的整體電容,本文在以上的研究基礎(chǔ)上引入了碳納米管的納米功能相來(lái)提供額外的比表面積存儲(chǔ)電荷,并形成良好的導(dǎo)電網(wǎng)絡(luò)。我們采用微波法在活性竹炭基上沉積均勻分散的納米顆粒,再通過化學(xué)氣相沉積以此為生長(zhǎng)位點(diǎn)原位生長(zhǎng)開口的碳納米管,合成了碳納米管、納米金屬和活性炭的多級(jí)三元雜化材料。碳管與活性炭表面通過納米顆粒作為節(jié)點(diǎn)緊密結(jié)合。這個(gè)獨(dú)特的三維雜化結(jié)構(gòu)使此復(fù)合材料表現(xiàn)出相當(dāng)大的比電容(1Ag~(-1)時(shí)為440Fg~(-1))及優(yōu)良的倍率性能(5Ag~(-1)相對(duì)于1Ag~(-1)時(shí),97%)。另外,三元雜化材料在5Ag~(-1)時(shí),循環(huán)3000次后仍可保留98.4%的初始電容,表明了其優(yōu)異的循環(huán)穩(wěn)定性。除了較高的比表面積,這樣優(yōu)異的電容性能主要?dú)w因于:開口的碳納米管(5~(-1)2nm)可提供更有效的離子通道;互相交錯(cuò)的納米管導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)促進(jìn)了電子的運(yùn)輸;超細(xì)小的納米金屬顆粒(3-9nm)提供了贗電容,表明了雙電層電容和贗電容反應(yīng)共同產(chǎn)生的協(xié)同效應(yīng)有利于提高總電容性能。綜上所述,本研究以低成本、來(lái)源廣、已工業(yè)化的生物質(zhì)納米孔碳為多孔支撐基底,研究了碳基原位微波復(fù)合納米功能相的制備方法,實(shí)現(xiàn)了生物質(zhì)納米孔碳與不同納米功能相(納米薄片Co(OH)_2、顆粒Co_3O_4、碳納米管/納米金屬)的二元、三元復(fù)合電極。復(fù)合電極具有分級(jí)多孔、導(dǎo)電性好和納米功能相分散均勻的結(jié)構(gòu)特點(diǎn),因此有效實(shí)現(xiàn)了贗電容、雙電層儲(chǔ)能的協(xié)同作用。微波沉積沉淀法具有耗時(shí)短、加熱高效均勻的特點(diǎn),將大大提高電極材料的生產(chǎn)效率。同時(shí),本文研究了不同種類的具有贗電容特性的納米功能相與碳基復(fù)合后產(chǎn)生的協(xié)同作用對(duì)于整體電容性能的影響,為基于生物質(zhì)的先進(jìn)功能電極材料的開發(fā)、構(gòu)筑和應(yīng)用提供了更為廣闊的研究空間。
[Abstract]:In recent years, with the rapid development of industrialization, the rapid increase of population and the continuous consumption of ore fuel (coal, petroleum and natural gas), energy shortage and environmental pollution are becoming more and more serious. Therefore, the clean and efficient use of energy has become the key to solve the above problems. With high power density (10kWkg~ (-1)), long cycle life (100000 cycles) and superior performance, it is widely used in industry, transportation and military. Supercapacitors mainly have two types, namely, double layer supercapacitor and pseudacapacitor supercapacitor. The former uses the physical adsorption of ion charge to store electrical energy and electricity. Polar materials are mainly carbon materials, such as activated charcoal, graphene and carbon nanotubes. They have excellent conductivity, so they have excellent multiplying performance; but limited to their specific surface area, their specific capacitance is smaller (300Fg~ (-1)), and the energy density is smaller (10Whkg~ (-1)). The state variable performance (reversible redox reaction) realizes the storage and release of the charge. The pseudopotential electrode material has a higher specific capacitance and energy density than the carbon material, but its poor conductivity reduces its multiplying performance and power density, and its cycle performance is worse than that of the carbon material. Therefore, based on the above two kinds of capacitor electrode materials The performance of material and the development of high performance carbon based composites have become a hot spot of research. Although new graphene and carbon nanotubes have received much attention, their capacitive performance is close to activated carbon, and the production cost is much higher than that of activated carbon. Therefore, it is not yet possible to achieve large-scale industrial production at this stage. And they are easy to happen in themselves. The stacking phenomenon, especially after the composite pseudopotential material, has a significant reduction in specific surface area, resulting in a large reduction in the double layer effect, which is not conducive to the effective use of the charge storage and pseudo capacitance effects of a double layer capacitor. On the other hand, in order to combine with other pseudosacacious nanoscale functions on this carbon base to further improve the capacitance characteristics, the preparation and capacitive performance of nanocomposite electrodes based on biomass carbon materials have been studied in this paper. Materials. These biomass provides a rich resource for simple human, cheap carbon materials. The biomass nanoscale carbon based on simple carbonization and activation process is not only low in production cost, but also partly because of its porous structure and surface properties, even after the composite nanoscale phase. The large specific surface area can provide more sedimentary loci for the composite of functional phase ions, promote the dispersive distribution of the composite on the carbon base, and ultimately improve the capacitance performance of the composite. This paper makes full use of the biomass nanoscale Kong Tan as the substrate and in situ introduction of nanoscale phase to prepare the advanced carbon based biomass. Porous carbon composite electrode material. The preparation technology of composite functional phase of biomass carbon surface was studied. The coupling effect of carbon based and pseudosacacp function of double layer capacitance was studied. The main contents and conclusions are as follows: first, in situ composite nano gold on the surface of biomass carbon nanohole carbon. There is a large difference in surface physics, chemical properties and microstructure of the nanoscale carbon materials prepared by different biomass. Therefore, the selection of suitable carbon based and composite technology is the key to the realization of the combination of biomass carbon and nanoscale function. In this paper, four kinds of biomass carbon nanoscale were selected, and the impregnation method was adopted respectively. The deposition of Co nanoparticles on the surface of biomass carbon was studied by water bath deposition precipitation method and microwave deposition method. Finally, a large pore volume, homogeneous pore size distribution and a large number of oxygen functional groups were established as carbon based carbon nanoscale. By microwave deposition precipitation method, the uniformity of Co nanoparticles on the carbon surface could be realized. The study found that Co (NO_3) _2 / 6H_2O was selected as the precursor solution, the concentration of solution was 3.4mM, the ratio of the urea solution at 1:10, the ultrasonic time 3min, the 2450MHz 700W low temperature microwave heating reaction 12min as the optimum microwave deposition experimental parameter, and the nanometer Kong Zhu carbon could be used to realize the high dispersive nano metal particle function phase on the nano Kong Zhu carbon. Composite, for the preparation of two yuan, three yuan biomass multi-dimensional nano porous carbon hybrid materials, two, nanoscale Co (OH) _2/ biomass nanoscale carbon nanocomposites electrode preparation and performance study in order to improve the surface utilization of Co (OH) _2 active material to improve the surface utilization, this paper through the rapid, cheap and effective microwave deposition of the flower The -Co (OH) _2 nanometers are in situ grown on the carbon base of biomass nanoscale, and are applied to the supercapacitor. The existence of carbon base promotes the dispersion of Co (OH) _2 nanoscale with pseudo capacitance. The thickness of Co (OH) _2 nanoscale layer is obviously reduced and the average thickness of the nanoscale layer is only about 5-9nm. The charge transfer provides a more sufficient channel. The specific capacitance of this hybrid structure can reach 345Fg~ (-1) under 0.1Ag~ (-1), and can maintain 284Fg~ (-1) at a high current density 5Ag~ (-1). In addition, the composite structure has a better stability of the hybrid structure, which reduces the capacity of the composite at 5Ag~ (-1) for 5000 times and the capacity attenuation is only 14%.. The excellent electrochemical properties are attributed to the synergism between Co (OH) _2 nanoscale films with porous carbon and pseudosacacp properties. Three, rapid synthesis of highly dispersed low temperature, size controlled Co_3O_4 particles / biomass nano pore carbon composite electrode preparation and performance study in order to improve the utilization of active substances and reduce the composite nanoscale phase The blockage of the carbon based surface makes the effect of the pseudo capacitance effect and the carbon based double layer charge storage effect can be fully played. In this paper, the composite of Co_3O_4 nanoscale particles and biomass nanoscale carbon is studied. The Co_3O_4 nanoparticles with uniform distribution on active bamboo charcoal have been applied to the super capacitor.Co by rapid microwave deposition and precipitation method. The size of _3O_4 nanoparticles can be controlled by several to dozens of nanometers by carbon based preoxidation. The synergistic effect of carbon based double layer capacitance and the pseudo capacitance of anchored Co_3O_4 nanoparticles determines the electrochemical properties of the hybrid materials. The size and load of Co_3O_4 nanoparticles affect the Co_3O_4 nanoparticles in the nano particles. The contribution of pseudo capacitance in hybrid materials. When the average size of the nanoparticles is about 7Nm and the load is 16.4wt%, the specific capacitance of the composite can reach 491Fg~ (-1) at 0.1Ag~ (-1) in the KOH of 6M. In addition, the specific capacitance attenuation of the synthesized two element hybrid material at the high current density 5Ag~ (-1) is only 11% after 5000 cycles of charge discharge, indicating Co_3. The strong binding force between the O_4 nanoparticles and the carbon base. Four, the preparation and properties of multi-stage three yuan carbon nanotubes / nanoscale / biomass carbon hybrid composite electrode materials to further improve the overall capacitance of the material. Based on the above research, the nano functional phase of carbon nanometers is introduced to provide an additional specific meter. The area stores charge and forms a good conductive network. We use microwave method to deposit evenly dispersed nanoparticles on active bamboo charcoal, and then by chemical vapor deposition to grow open carbon nanotubes in situ at the growth site. The multistage three element hybrid materials of carbon nanotubes, nanoscale metal and activated carbon are synthesized. Carbon tube and activity have been synthesized. The carbon surface is tightly combined with the nanoparticles as nodes. This unique three-dimensional hybrid structure makes the composite exhibit considerable specific capacitance (1Ag~ (-1) for 440Fg~ (-1)) and excellent multiplier performance (5Ag~ (-1) relative to 1Ag~ (-1), 97%). In addition, three yuan hybrid materials can remain at the beginning of 98.4% after 3000 cycles in 5Ag~ (-1). In addition to the high specific surface area, the excellent capacitive performance is mainly attributable to the fact that the open carbon nanotube (5~ (-1) 2nm) provides more effective ion channels; the interlaced nanotube conductive network structure promotes the transport of the electric energy; the ultra fine nano metal particles (3-9nm) provide Pseudo capacitance shows that the synergistic effect produced by the double layer capacitance and the pseudosacacious reaction is beneficial to the improvement of the total capacitance. In this study, the preparation method of carbon based in situ microwave compound nano functional phase is studied with low cost, wide source and industrialized biomass nanoscale carbon as the porous support substrate. Mica carbon and different nanoscale phase (nanoscale Co (OH) _2, particle Co_3O_4, carbon nanotube / nano metal) are two yuan and three element composite electrodes. The composite electrode has the structure characteristics of the porous structure, good conductivity and the dispersion and uniformity of nanoscale function. Therefore, the synergistic effect of pseudo capacitance and double layer energy storage is effectively realized. Microwave deposition precipitation method The characteristics of short time and high efficiency will greatly improve the production efficiency of the electrode materials. At the same time, the effects of the synergistic effects of different kinds of nano functional phase and carbon based composite on the overall capacitive performance are studied, and the development of advanced functional electrode materials based on raw materials and the construction and construction of the materials are also studied. The application provides a broader research space.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;TM53
,
本文編號(hào):2073521
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2073521.html
最近更新
教材專著