端氟烷基超支化聚氨酯成膜劑的合成及表征
本文選題:陰/陽(yáng)離子型水性聚氨酯 + 端氟烷基。 參考:《陜西科技大學(xué)》2017年碩士論文
【摘要】:針對(duì)水性聚氨酯耐水性差的缺陷,本文做了相關(guān)的改性研究,具體研究?jī)?nèi)容如下:首先,以異氟爾酮二異氰酸酯(IPDI)、聚己二酸丁二醇酯(CMA-1044)、1,4-丁二醇(BDO)和二羥甲基丙酸(DMPA)為原料采用丙酮法合成了-NCO封端的聚氨酯預(yù)聚體(PU);然后加入端羥基超支化聚合物進(jìn)行改性,合成了超支化聚氨酯(HBPU);再通過(guò)接枝反應(yīng)使全氟己基乙醇(S104)與HBPU反應(yīng)制得一種新型端氟烷基超支化聚氨酯(HBPUF),最后經(jīng)中和、加水分散即制得HBPUF乳液。用傅里葉紅外光譜(FT-IR)、核磁共振波譜(NMR)、透射電鏡(TEM)、納米粒度儀、熱重分析儀(TGA)、差示掃描量熱儀(DSC)、X-射線衍射儀(XRD)、光電子能譜儀(XPS)、掃描電鏡(SEM)、原子力顯微鏡(AFM)以及靜態(tài)接觸角測(cè)量?jī)x等分別對(duì)乳液主組分的結(jié)構(gòu)、乳膠粒形貌、粒徑大小及分布、膠膜熱性能、膜微觀結(jié)構(gòu)、膜表面化學(xué)組成、膜形貌以及膜疏水性進(jìn)行研究。FT-IR、1H NMR及13C NMR結(jié)果證實(shí)所制備的HBPUF具有預(yù)期的結(jié)構(gòu)。HBPUF乳液具有良好的穩(wěn)定性,聚合物膠粒呈規(guī)則圓球狀和核殼結(jié)構(gòu),在內(nèi)部相對(duì)明亮的區(qū)域有微弱明暗交替的衍射環(huán),說(shuō)明HBPUF聚合物具有一定的結(jié)晶性。XPS分析表明,在成膜過(guò)程中氟碳鏈發(fā)生了明顯的表面遷移,使得HBPUF膜的疏水性提高;HBPUF膠膜的接觸角較PU膠膜提高了36.1°,吸水率較PU膠膜降低了125.2%。TGA分析表明,PU、HBPU以及HBPUF的熱穩(wěn)定性逐漸增強(qiáng)。DSC分析發(fā)現(xiàn)PU、HBPU和HBPUF均存在結(jié)晶熔融吸收峰,這表明這些聚合物中均存在一定程度上的結(jié)晶。XRD分析進(jìn)一步說(shuō)明了聚合物的結(jié)晶情況,與PU相比,由于超支化聚合物的引入,HBPU和HBPUF的結(jié)晶區(qū)出現(xiàn)了更小晶粒。SEM分析也驗(yàn)證了這一觀點(diǎn)。AFM分析表明,PU膜存在微觀相分離現(xiàn)象;由于超支化聚合物的引入,其交聯(lián)作用導(dǎo)致鏈與鏈之間的卷曲或盤旋受阻,從而使HBPU膜微觀精細(xì)形貌較為平滑;HBPUF中端氟烷基的表面遷移作用使其微觀相分離非常顯著,膜粗糙度大大增加。其次,以異氟爾酮二異氰酸酯(IPDI)、聚己二酸丁二醇酯(CMA-1044)、1,4-丁二醇(BDO)和N-甲基二乙醇胺(MDEA)為原料采用丙酮法合成了-NCO封端的聚氨酯預(yù)聚體(CPU);然后加入端羥基超支化聚合物進(jìn)行改性,合成了超支化聚氨酯(CHBPU);再通過(guò)接枝反應(yīng)使全氟己基乙醇(S104)與CHBPU反應(yīng)制得一種新型端氟烷基超支化聚氨酯(CHBPUF),最后經(jīng)中和、加水分散即制得CHBPUF乳液。用傅里葉紅外光譜(FT-IR)、核磁共振波譜(NMR)、透射電鏡(TEM)、納米粒度儀、熱重分析儀(TGA)、差示掃描量熱儀(DSC)、X-射線衍射儀(XRD)、光電子能譜儀(XPS)、掃描電鏡(SEM)、原子力顯微鏡(AFM)以及靜態(tài)接觸角測(cè)量?jī)x等分別對(duì)乳液主組分的結(jié)構(gòu)、乳膠粒形貌、粒徑大小及分布、膠膜熱性能、膜微觀結(jié)構(gòu)、膜表面化學(xué)組成、膜形貌以及膜疏水性進(jìn)行研究。FT-IR、1H NMR以及13C NMR結(jié)果同樣表明所制備的CHBPUF具有預(yù)期的結(jié)構(gòu)。CHBPUF乳液由于MDEA的乳化能力較弱,穩(wěn)定性不佳,外觀呈乳黃色。XPS分析表明,在成膜過(guò)程中氟碳鏈發(fā)生了明顯的表面遷移,使得CHBPUF膜的疏水性提高;CHBPUF膠膜的接觸角較CPU膠膜提高了18.5°,CHBPUF膠膜的吸水率較PU膠膜降低了91.67%。TGA分析表明,CPU、CHBPU以及CHBPUF的熱穩(wěn)定性逐漸增強(qiáng)。DSC分析發(fā)現(xiàn)CPU、CHBPU和CHBPUF均存在結(jié)晶熔融吸收峰,這表明這些聚合物中均存在一定程度上的結(jié)晶。XRD分析結(jié)果進(jìn)一步說(shuō)明了聚合物的結(jié)晶情況,與CPU相比,由于超支化聚合物的引入,CHBPU和CHBPUF的結(jié)晶區(qū)出現(xiàn)了更小晶粒。SEM分析也驗(yàn)證了這一觀點(diǎn)。AFM分析表明,CPU膜存在微觀相分離現(xiàn)象;由于超支化聚合物的引入,其交聯(lián)作用導(dǎo)致鏈與鏈之間的卷曲或盤旋受阻,從而使CHBPU膜微觀精細(xì)形貌較為平滑;CHBPUF中端氟烷基的表面遷移作用使其微觀相分離非常顯著,膜粗糙度大大增加。
[Abstract]:In view of the defects of water borne polyurethane with poor water resistance, the relevant modification research was made in this paper. The specific research contents are as follows: first, the polyurethane prepolymer (PU) with -NCO sealing ends (PU) was synthesized by acetone method using isoflofarone diisocyanate (IPDI), polybutylene adipate (CMA-1044), 1,4- butanediol (BDO) and dimethy propionic acid (DMPA) as raw materials. After adding hydroxyl terminated hyperbranched polymer, the hyperbranched polyurethane (HBPU) was synthesized and a new type of terminated fluoroalkyl hyperbranched polyurethane (HBPUF) was prepared by reaction of graft reaction and HBPU. Finally, HBPUF emulsion was prepared by neutralization and water dispersion. The Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy were used. (NMR), transmission electron microscopy (TEM), nano particle size meter, thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), X- ray diffractometer (XRD), photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM) and static contact angle measuring instrument, respectively, the morphology, size and distribution of latex particles, the size and distribution of the particle size, and the thermal properties of the film. The microstructure of the membrane, the chemical composition of the surface of the membrane, the morphology of the membrane and the hydrophobicity of the membrane have been studied. The results of.FT-IR, 1H NMR and 13C NMR confirm that the prepared HBPUF has the expected structural.HBPUF emulsion with good stability. The polymer particles are regular sphere and nuclear shell structure, and there is a weak light and dark alternate diffraction ring in the interior relatively bright region. It is indicated that the HBPUF polymer has a certain crystalline.XPS analysis, which shows that the fluorocarbon chain has obvious surface migration during the film forming process, which makes the hydrophobicity of the HBPUF film increase, the contact angle of the HBPUF film is 36.1 degrees higher than that of the PU film, and the water absorption rate is lower than that of the PU film by 125.2%.TGA segregation, and the thermal stability of PU, HBPU and HBPUF increases gradually. The strong.DSC analysis found that the crystallization and melting absorption peaks of PU, HBPU and HBPUF showed that there was a certain degree of crystallization.XRD analysis in these polymers to further illustrate the crystallization of the polymer. Compared with PU, the crystallization area of HBPU and HBPUF appeared in the crystallization region of HBPU and HBPUF, as compared with PU. .AFM analysis shows that there is a microscopic phase separation in the PU film. Because of the introduction of the hyperbranched polymer, the cross linking effect leads to the curl or circling between chain and chain, which makes the fine morphology of the HBPU film more smooth, and the surface migration of fluorine alkyl at the middle end of HBPUF makes the microscopic phase separation very significant and the film roughness is greatly increased. Secondly, the -NCO sealed polyurethane prepolymer (CPU) was synthesized with isoflolone diisocyanate (IPDI), polybutylene adipate (CMA-1044), 1,4- butanediol (BDO) and N- methyl two ethanolamine (MDEA) as raw materials, and then the hyperbranched polyurethane (CHBPU) was synthesized by adding hydroxy terminated hyperbranched polymers, and then graft copolymerization was made by grafting. The reaction made a new type of endoflurane based hyperbranched polyurethane (CHBPUF) prepared by the reaction of perfluorohexyl alcohol (S104) with CHBPU. Finally, the CHBPUF emulsion was produced by neutralization and water dispersion. Using Fourier infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), transmission electron microscopy (TEM), nano particle size instrument, thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), X-. Line diffractometer (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and static contact angle measuring instrument, respectively, the structure of the main component of emulsion, the size and distribution of latex particles, the thermal properties of the film, the microstructure of the membrane, the chemical composition of the membrane surface, the morphology of the membrane and the hydrophobicity of the membrane,.FT-IR, 1H NMR The results of 13C NMR also show that the prepared CHBPUF has the expected structural.CHBPUF emulsion because of the weak emulsification capacity of MDEA, and the appearance of the emulsion yellow.XPS analysis shows that the fluorocarbon chain has obvious surface migration during the film forming process, which makes the hydrophobicity of the CHBPUF film improved, and the contact angle of the CHBPUF film is higher than that of the CPU film. The water absorption of CHBPUF film was lower than that of PU film by 91.67%.TGA analysis. The 91.67%.TGA analysis showed that the thermal stability of CPU, CHBPU and CHBPUF increased gradually by.DSC analysis and found that CPU, CHBPU and CHBPUF all had crystallization absorption peaks. This indicates that all of these polymers all have a certain degree of crystallization.XRD analysis results to further explain the polymer junction. As compared with CPU, compared with CPU, due to the introduction of hyperbranched polymers, smaller grain.SEM analysis appeared in the crystalline region of CHBPU and CHBPUF. The.AFM analysis showed that there was a microscopic phase separation in the CPU film. Because of the introduction of the hyperbranched polymer, the crosslinking of the chain and the curling or circling between the chain and the chain was hindered, so that CHBPU The microscopic morphology of the films is smoother. The surface migration of fluorinated alkyl groups in CHBPUF makes the microscopic phase separation very significant, and the roughness of the films increases greatly.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.2;TQ317
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉愛(ài)珍;強(qiáng)西懷;李亞敏;孫哲;方銀軍;閆哲;;脂肪醇聚氧乙烯醚型陽(yáng)離子聚氨酯表面活性劑的制備與性能[J];精細(xì)化工;2016年10期
2 王學(xué)川;王莎;許偉;強(qiáng)濤濤;;端氟烷基超支化聚氨酯乳液的合成及性能[J];精細(xì)化工;2016年10期
3 強(qiáng)濤濤;李小寧;唐華;任龍芳;;耐水耐熱型水性聚氨酯的制備及性能研究[J];中國(guó)皮革;2016年09期
4 韓顏庭;董偉;辛中印;;聚醚軟段對(duì)水性高固含乙氧基懸掛鏈聚氨酯性能的影響[J];皮革科學(xué)與工程;2016年01期
5 張曉輝;楊建軍;吳慶云;張建安;吳明元;;有機(jī)氟改性超支化水性聚氨酯的合成與性能[J];高分子材料科學(xué)與工程;2015年10期
6 賈磊;安秋鳳;潘家炎;張蓓;康少冉;馬立博;;超支化聚氨酯氟代聚丙烯酸酯的合成與應(yīng)用[J];精細(xì)化工;2015年09期
7 胡楊飛;王德海;杜治波;肖圣威;蔣仕強(qiáng);;非離子型水性聚氨酯的制備及其涂膜表面性質(zhì)研究[J];涂料工業(yè);2014年09期
8 王學(xué)川;宗奕珊;強(qiáng)濤濤;;無(wú)皂蓖麻油基聚氨酯-丙烯酸酯復(fù)合乳液的制備與性能研究[J];功能材料;2014年15期
9 王文娟;胡靜;孫道興;李少香;;有機(jī)氟改性水性聚氨酯性能研究[J];電鍍與涂飾;2014年06期
10 王學(xué)川;任靜;強(qiáng)濤濤;;水性聚氨酯親水性擴(kuò)鏈劑的研究進(jìn)展[J];化工進(jìn)展;2014年02期
相關(guān)博士學(xué)位論文 前1條
1 王小榮;水性聚氨酯丙烯酸酯水性漆制備及性能研究[D];陜西科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前7條
1 劉海艷;有機(jī)氟硅改性陽(yáng)離子聚氨酯紡織品整理劑的制備及應(yīng)用[D];西安工程大學(xué);2015年
2 黃濤;合成革水性聚氨酯涂飾劑的合成與應(yīng)用[D];東華大學(xué);2015年
3 馮春云;超支化聚氨酯/丙烯酸酯UV光固化樹脂的制備及應(yīng)用研究[D];五邑大學(xué);2014年
4 李贊;含氟聚氨酯的表面結(jié)構(gòu)控制與性能研究[D];上海師范大學(xué);2014年
5 宗奕珊;水性聚氨酯—丙烯酸酯復(fù)合乳液的制備及其改性研究[D];陜西科技大學(xué);2014年
6 謝霞;基于自潔空濾器的疏水材料的制備及性能研究[D];湖北工業(yè)大學(xué);2013年
7 彭文奇;高固含水性聚氨酯的合成及其結(jié)晶性的研究[D];華南理工大學(xué);2011年
,本文編號(hào):2069585
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2069585.html