天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

基于FOA-GRNN的納米鐵粉分解爐溫度預(yù)測(cè)

發(fā)布時(shí)間:2018-06-21 09:09

  本文選題:納米鐵粉 + 溫度預(yù)測(cè)。 參考:《中國測(cè)試》2017年04期


【摘要】:為提高納米鐵粉的制備工藝,實(shí)現(xiàn)納米鐵粉分解爐溫度的精確控制,提出一種基于果蠅優(yōu)化算法和廣義回歸神經(jīng)網(wǎng)絡(luò)的納米鐵粉分解爐溫度預(yù)測(cè)方法。該方法采用現(xiàn)場(chǎng)采集數(shù)據(jù),選取進(jìn)液量和各個(gè)溫區(qū)加熱裝置的開度因素來預(yù)測(cè)待預(yù)測(cè)溫區(qū)溫度。通過廣義回歸神經(jīng)網(wǎng)絡(luò),建立溫度預(yù)測(cè)模型,并利用果蠅優(yōu)化算法對(duì)光滑因子進(jìn)行動(dòng)態(tài)尋優(yōu)。選取不同種群規(guī)模對(duì)建立模型進(jìn)行驗(yàn)證,并將該文建立模型與普通廣義神經(jīng)網(wǎng)絡(luò)和粒子群算法優(yōu)化的廣義神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)效果進(jìn)行對(duì)比。驗(yàn)證表明:該文建立模型平均相對(duì)誤差為0.43%,且能夠排除人為設(shè)置參數(shù)的干擾,具有較好的準(zhǔn)確性與穩(wěn)定性,可進(jìn)一步用于分解爐溫度控制的研究。
[Abstract]:In order to improve the preparation process of nanometer iron powder and realize the accurate control of the temperature of nanometer iron powder decomposing furnace, a temperature prediction method of nanometer iron powder decomposing furnace based on Drosophila optimization algorithm and generalized regression neural network was proposed. In this method, the field data are collected, and the temperature of the temperature region is predicted by selecting the input liquid quantity and the opening factor of the heating device in each temperature zone. The temperature prediction model was established by generalized regression neural network, and the smoothing factor was dynamically optimized by Drosophila optimization algorithm. Different population sizes are selected to verify the model, and the prediction results of this model are compared with that of the generalized neural network model and particle swarm optimization model based on general generalized neural network (GNN) and particle swarm optimization (PSO). The results show that the average relative error of the model is 0.43 and the disturbance of artificial parameters can be eliminated. The model has good accuracy and stability and can be further used in the study of calciner temperature control.
【作者單位】: 長春工業(yè)大學(xué)電氣與電子工程學(xué)院;
【基金】:吉林省重點(diǎn)科技攻關(guān)項(xiàng)目(20140204024GX)
【分類號(hào)】:TP18;TB383.1
,

本文編號(hào):2048011

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2048011.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶abf40***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com