無機(jī)半導(dǎo)體納米材料在聚合物太陽能電池中的應(yīng)用
發(fā)布時間:2018-06-17 02:48
本文選題:聚合物太陽能電池 + Cu2ZnSnSe4納米粒子; 參考:《南昌大學(xué)》2015年碩士論文
【摘要】:近年來,聚合物太陽能電池因其制備成本較低、質(zhì)量輕和可溶液制備等優(yōu)點(diǎn),克服了傳統(tǒng)無機(jī)太陽能電池的成本高、機(jī)械性能差等缺點(diǎn),而引起了人們的廣泛關(guān)注。目前報道的基于富勒烯衍生物和共軛聚合物的有機(jī)太陽能電池的光電轉(zhuǎn)換效率雖然已經(jīng)超過10%,但無論是富勒烯衍生物還是聚合物,它們的吸光系數(shù)都較低,故對太陽光譜的捕獲有限的弊端也逐漸顯現(xiàn)出來。而且在體相異質(zhì)結(jié)太陽能電池中,活性層的能級偏移和與電極接觸的界面問題也是限制其發(fā)展的重要因素。吸光層與電極之間幾毫伏的能壘就會導(dǎo)致電荷的累積與復(fù)合,因此建立有效的電荷抽取和良好的歐姆接觸不僅可以增強(qiáng)器件的穩(wěn)定性,也是提高光伏器件的重要策略。利用無機(jī)半導(dǎo)體納米晶解決界面問題,首先要除去納米粒子表面的多余絕緣配體,并保證其良好的分散。因為納米粒子如果因高溫配體交換而產(chǎn)生團(tuán)聚現(xiàn)象,發(fā)生宏觀相分離的話,就會使活性層和電極的界面之間相容性變差,接觸不良,從而不利于激子的分離與自由電荷的傳輸。其次還要求抽取電子的界面材料可以形成連續(xù)不斷的互穿網(wǎng)絡(luò)結(jié)構(gòu),給電荷的抽取和載流子的傳輸提供良好的通道。本文采用平面性良好的氧化石墨烯(GO)提高配體交換的納米晶的分散性和使用3D結(jié)構(gòu)的半導(dǎo)體納米晶修飾電極界面的方法解決了這兩個問題。具體方法如下:第一,本文使用熱注入的方法制備了四方晶型的Cu2ZnSnSe4納米粒子作為正向器件的空穴傳輸層,取代了聚(3,4-亞乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS),并用配體吡啶交換的方法去除納米晶表面的絕緣有機(jī)物,來提高半導(dǎo)體納米晶的電荷傳輸能力。但是交換后的納米粒子容易聚集的現(xiàn)象會導(dǎo)致電池漏電。為了解決納米粒子聚集的問題,加入少量氧化石墨烯(GO)作為負(fù)載和分散團(tuán)聚半導(dǎo)體的納米模板,不僅使納米晶與氧化石墨烯上的官能團(tuán)通過靜電作用相互吸引,提高了納米粒子的分散性,制備的納米復(fù)合物還有助于調(diào)控陽極緩沖層的功函,從而使器件效率升高一倍。第二,本文通過制備CdSe四足體(TPs)納米晶修飾反向器件中緩沖層Zn O的表面,形成3D網(wǎng)絡(luò)結(jié)構(gòu)的電子傳輸與抽取通道,有效的增加了短路電流,降低了ZnO的表面缺陷。導(dǎo)致整個電池的串聯(lián)電阻降低,從而使填充因子從52.9%提高到61.3%;另外通過優(yōu)化CdSe的濃度,使短路電流從7.39 mA·cm-2提高到8.03 mA·cm-2。
[Abstract]:In recent years, due to the advantages of low preparation cost, light quality and solution preparation, polymer solar cells have overcome the disadvantages of high cost and poor mechanical properties of traditional inorganic solar cells, which have aroused widespread concern. The photoelectric conversion of organic solar cells based on fullerene derivatives and conjugated polymers is reported. Although the exchange efficiency has exceeded 10%, the absorption coefficient of the fullerenes and polymers is low, so the limitation of the limited absorption of the solar spectrum is gradually apparent. In the bulk heterojunction solar cell, the energy level migration of the active layer and the interface problem with the electrode are also limited to its development. Factors. The energy barrier of a few milli V between the absorption layer and the electrode leads to the accumulation and recombination of the charge. Therefore, the establishment of effective charge extraction and good ohmic contact can not only enhance the stability of the devices, but also be an important strategy for improving the photovoltaic devices. The superfluous insulating ligand on the surface ensures its good dispersion, because if the nanoparticles are agglomerated because of the exchange of high temperature ligands, the compatibility between the interfaces of the active layer and the electrode will be worse and the contact is poor, which is not conducive to the separation of the exciton and the free charge transmission. Secondly, the extraction of the particles is also required to be extracted. The electronic interface materials can form a continuous interpenetrating network structure, providing a good channel for charge extraction and carrier transmission. In this paper, a good planar graphene oxide (GO) is used to improve the dispersibility of nanocrystals exchanged by ligand and the method of using the interface of semiconductor nanocrystalline modified electrode with 3D structure to solve this two The specific methods are as follows: first, we use the method of heat injection to prepare the tetragonal crystalline Cu2ZnSnSe4 nanoparticles as the cavity transport layer of the positive device, replacing the poly (3,4- B two oxygen thiophene) poly (PEDOT:PSS), and using the ligand pyridine exchange method to remove the insulating organic matter on the nanocrystalline surface. In order to solve the problem of nanoparticle aggregation, a small amount of graphene oxide (GO) can be used as a load and nano template to disperse the aggregate semiconductor, not only the nanocrystalline and the functional groups on the graphene oxide are not only passed. The electrostatic interaction attracts each other and improves the dispersion of the nanoparticles. The prepared nanocomposites can also help to control the work function of the anode buffer layer. Thus, the efficiency of the device is doubled. Second. By preparing the surface of the buffer layer Zn O in the CdSe tetrapod (TPs) nanocrystalline modified reverse device, the electronic transmission and pumping of the 3D network structure is formed. When the channel is taken, the short circuit current is effectively increased and the surface defect of ZnO is reduced. The series resistance of the whole battery is reduced, and the filling factor is increased from 52.9% to 61.3%, and the short circuit current is increased from 7.39 mA. Cm-2 to 8.03 mA. Cm-2. by optimizing the concentration of the battery.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;TM914.4
【共引文獻(xiàn)】
相關(guān)期刊論文 前1條
1 劉劍剛;韓艷春;;聚合物/富勒烯共混體系雙分子穿插對有機(jī)體相異質(zhì)結(jié)太陽能電池性能的影響[J];中國科學(xué):化學(xué);2015年03期
相關(guān)博士學(xué)位論文 前1條
1 趙新彥;有機(jī)太陽能電池的理論模擬及旋涂/靜電噴霧法制備[D];南京郵電大學(xué);2014年
,本文編號:2029302
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2029302.html
最近更新
教材專著