聚亞甲基藍納米粒子的合成及其在DNA檢測中的應用
發(fā)布時間:2018-06-16 15:02
本文選題:聚亞甲基藍納米粒子 + 反相微乳液法; 參考:《陜西師范大學》2015年碩士論文
【摘要】:隨著化學傳感器和生物傳感器發(fā)展,對目標分子進行靈敏度高、選擇性好、快速、準確的檢測是其研究的主要方向。在最近幾年,納米材料的應用,使化學傳感器和生物傳感器的性能得到了很大的提高。納米材料因在傳感器方面產(chǎn)生的重大影響,其合成方法有了顯著的進步。各種大小、形狀、表面電荷和物理化學特性等可控的納米材料已被合成。其中二氧化硅納米粒子、納米金、量子點團簇、半導體量子點、上轉換發(fā)光納米粒子、聚合物納米粒子、碳納米管以及石墨烯在化學和生物傳感器的研究中被廣泛使用。納米材料被廣泛用于性能優(yōu)良的電化學DNA生物傳感器,主要原因為:一、通過修飾聚合物和生物活性分子使納米材料達到良好生物相容性;二、其自身具有獨特的電化學活性或可摻雜電活性物質。由于納米粒子在制備電化學DNA生物傳感器時,多數(shù)是利用其信號放大技術,有的卻需要摻雜或包埋一些電活性物質,比如亞甲基藍、二茂鐵和尼羅藍等,有的則是通過標記電活性物質,來實現(xiàn)DNA的檢測。摻雜型納米粒子中的電活性物質,其電化學活性不能更好地表現(xiàn)出來,而標記型納米粒子需要對納米粒子進行官能團化。基于以上問題,本文旨在合成一種新型的導電聚合物納米粒子,該納米粒子本身具有良好的電活性,也易于官能團化,即可以用于信號放大,也可以作為電化學標記物。本文主要由綜述和研究報告兩部分組成,綜述部分介紹了納米材料、導電聚合物納米材料、DNA電化學生物傳感器和納米材料在DNA電化學生物傳感器的應用,分析了本文選題的目的和意義。研究報告也由兩部分組成:1.聚亞甲基藍納米粒子的合成及免標記法檢測DNA的研究首次在室溫下成功合成聚亞甲基藍納米粒子(PMBNPs),采用反相微乳液法,用過磷酸銨作氧化劑氧化單體亞甲基藍,使之在油包水體系中合成了聚亞甲基藍納米粒子。再利用透射電子顯微鏡和循環(huán)伏安法,對新合成的聚亞甲基藍納米粒子進行表征。為了進一步地研究該納米粒子,構建了一種新型的免標記的DNA電化學傳感器。首先將PMBNPs直接固定在電極表面,在PMBNPs表面電鍍一層金納米粒子,通過金硫鍵連接帶巰基的探針DNA。DNA的雜交一方面使溶液中的對離子向電極表面擴散的通道被部分堵塞導致聚亞甲基藍納米粒子的氧化還原電流降低;另一方面也嚴重阻礙了電子轉移通道,減少了電子轉移的有效面積,使電活性物質的氧化還原電流降低。所以,用電化學法測定目標DNA,實際上是通過檢測固定在電極表面的PMBNPs的氧化還原電流,從而對DNA雜交事件進行識別。在最佳條件下,該傳感器的氧化電流與目標DNA在0.2fM到1pM濃度范圍內有線性關系,檢出限是6.67fM。2.基于DNA對聚亞甲基藍納米粒子的吸附作用構建電化學免標記DNA傳感器采用上述方法合成的PMBNPs,并用循環(huán)伏安和Zeta電位進行表征,結果表明聚亞甲基藍納米粒子具有良好的電化學活性,且其表面帶正電荷。由于ssDNA與dsDNA所帶負電荷數(shù)量的不同,所以單、雙鏈DNA吸附正電荷的PMBNPs的量不同。本文通過用差分脈沖伏安法,分別測定被單、雙鏈吸附的PMBNPs,實現(xiàn)對DNA雜交事件的識別。此方法把聚亞甲基藍納米粒子作為雜交指示劑,可實現(xiàn)電化學信號放大,完成對DNA高靈敏度檢測。
[Abstract]:With the development of chemical sensors and biosensors, the main direction of the research is high sensitivity, selectivity, rapid and accurate detection of the target molecules. In recent years, the application of nanomaterials has greatly improved the performance of chemical sensors and biosensors. The synthetic methods have made remarkable progress. Various sizes, shapes, surface charges and physical and chemical properties of nanomaterials have been synthesized. Among them, silica nanoparticles, gold nanoparticles, quantum dots clusters, semiconductor quantum dots, upconversion luminescent nanoparticles, polymer nanoparticles, carbon nanotubes, and graphene are in chemical and chemical properties. Nanomaterials are widely used in the study of biosensors. Nanomaterials are widely used in electrochemical DNA biosensors with excellent performance. The main reasons are: first, the good biocompatibility of nanomaterials is achieved by modifying polymers and bioactive molecules; two, its own unique electrochemical activity or doping electroactive substances. When nano particles are prepared for electrochemical DNA biosensors, most of them use their signal amplification techniques, some of which need to be doped or embedded in some electroactive substances, such as methylene blue, two ferrocene and Nile blue, and some are used to detect DNA by labeling electroactive substances. Based on the above problems, the aim of this paper is to synthesize a new type of conductive polymer nanoparticles, which have good electrical activity and easy to be functionalized, that is, it can be used in signal amplification and can be used as electrochemistry. This article is mainly composed of two parts. This article is mainly composed of two parts: the summary and the research report. It introduces the applications of nanomaterials, conductive polymer nanomaterials, electrochemical biosensors and nanomaterials in DNA electrochemical biosensors. The purpose and meaning of this topic are analyzed. The research report is also composed of two parts: 1. polymethylmethylene The synthesis of blue nanoparticles and the detection of DNA by non labeling method were the first time to successfully synthesize polymethylene blue nanoparticles (PMBNPs) at room temperature. The polymethylene blue was oxidized by the reverse phase microemulsion and ammonium peroxide as oxidizing agent. The polymethylene blue nanoparticles were synthesized in the oil water system, and then the transmission electron microscope was used. Cyclic voltammetry was used to characterize the newly synthesized polymethylmethylene blue nanoparticles. In order to further study the nanoparticles, a new type of DNA electrochemical sensor was constructed. First, PMBNPs was directly immobilized on the surface of the electrode, electroplating a layer of gold nanoparticles on the surface of PMBNPs, and connecting the probe DNA.D with sulfhydryl group through the gold sulfur bond. On the one hand, the crossbreeding of NA leads to a partial blockage of the channel diffusion to the surface of the electrode resulting in the reduction of the redox current of the polymethylene blue nanoparticles; on the other hand, the electron transfer channel is seriously hindered, the effective area of the electron transfer is reduced and the oxidation-reduction current of the electroactive substance is reduced. So, the use of electricity is used. The determination of target DNA by chemical method is actually by detecting the redox current of PMBNPs fixed on the surface of the electrode and identifying the DNA hybridization event. Under the optimum conditions, the oxidation current of the sensor has a linear relationship with the target DNA in the 0.2fM to 1pM concentration range, and the detection limit is 6.67fM.2. based on DNA against polymethylene blue nanoparticles. The adsorption of the electrochemically labeled DNA sensor is constructed with the PMBNPs synthesized by the above method and characterized by cyclic voltammetry and Zeta potential. The results show that the polymethylmethylene blue nanoparticles have good electrochemical activity and have positive charges on the surface. Because the number of negative charges with ssDNA and dsDNA is different, the single, double chain DNA suction is used. The amount of PMBNPs with positive charge is different. In this paper, by using differential pulse voltammetry to determine the PMBNPs of single and double chain adsorption respectively, the identification of DNA hybridization events is realized. This method uses polymethylmethylene blue nanoparticles as a hybrid indicator to achieve electrochemical signal amplification and high sensitivity detection of DNA.
【學位授予單位】:陜西師范大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB383.1;O657.1
【參考文獻】
相關期刊論文 前2條
1 馬利;劉昊;甘孟瑜;王成章;;乳液法合成磺基水楊酸摻雜納米聚苯胺[J];表面技術;2006年04期
2 井新利,鄭茂盛,藍立文;反向微乳液法合成導電聚苯胺納米粒子[J];高分子材料科學與工程;2000年02期
,本文編號:2027097
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2027097.html
最近更新
教材專著