羥基錫酸鋅及其復(fù)合材料的合成與光催化性能研究
本文選題:微納米復(fù)合材料 + 羥基錫酸鋅; 參考:《鄭州大學(xué)》2015年碩士論文
【摘要】:納米半導(dǎo)體材料作為光催化劑在環(huán)境、能源領(lǐng)域有著廣闊的應(yīng)用前景。羥基錫酸鋅(Zn Sn(OH)6)是一種新型的半導(dǎo)體光催化材料,具有面心立方堆積典型的鈣鈦礦型晶體結(jié)構(gòu),由于其特殊的晶體結(jié)構(gòu),表面豐富的羥基有利于與光生空穴形成氫氧自由基(·OH),催化降解生物難降解的有機(jī)污染物。本文通過水熱法合成不同形貌的Zn Sn(OH)6微納米粉體,研究了不同晶體結(jié)構(gòu)的生長機(jī)理,制備了不同碳源(葡萄糖、石墨烯)改性的Zn Sn(OH)6復(fù)合材料,進(jìn)而改善Zn Sn(OH)6的光催化性能。本文的主要內(nèi)容如下:以(CH3COO)2Zn·2H2O、Sn Cl4·5H2O、Na OH為實驗原料,在160oC條件下利用水熱法合成了形貌可控的Zn Sn(OH)6微納米粉體,研究了反應(yīng)體系不同p H值以及水熱反應(yīng)時間對Zn Sn(OH)6晶體結(jié)構(gòu)、微觀形貌、分散性以及粒度大小的影響。研究表明,Zn2+:OH-:Sn4+摩爾比為1:10:1晶體生長為正八面體形貌(2~3μm),當(dāng)Zn2+:OH-:Sn4+摩爾比為1:6:1晶體生長為立方體形貌(100~200nm);具有高分散性、大比表面積的Zn Sn(OH)6立方體粉體為光催化反應(yīng)提供了大量的反應(yīng)活性位點,進(jìn)而表現(xiàn)出顯著的光催化活性。水熱反應(yīng)時間的延長加劇了Zn Sn(OH)6粉體團(tuán)聚,降低了催化反應(yīng)中目標(biāo)降解物與催化劑的接觸面積,導(dǎo)致Zn Sn(OH)6催化反應(yīng)效率的下降,最佳反應(yīng)時間為16h。以葡萄糖為碳源,采用水熱法合成C摻雜Zn Sn(OH)6微納米粉體,并通過在可見光下(??400 nm)降解MB溶液(10mg/L)表征其光催化活性,使用XRD、SEM、FTIR、EDS、XPS等手段對不同C含量(0.1 2.0wt%)、不同反應(yīng)體系濃度的C-Zn Sn(OH)6樣品進(jìn)行了表征。結(jié)果表明,1.0wt%C-Zn Sn(OH)6樣品表現(xiàn)出最佳光催化性能,在100min內(nèi)對MB溶液降解率達(dá)到96.3%,且1.0wt%C-Zn Sn(OH)6降解速率常數(shù)(k=0.032min?1)相比于純凈的Zn Sn(OH)6(k=0.006min?1)有很大提高。XPS結(jié)果表明,C-Zn Sn(OH)6樣品中C元素以C1s(284.8e V)化學(xué)態(tài)的存在,C的摻雜提高了Zn Sn(OH)6晶體的結(jié)晶度,且游離態(tài)的碳元素有助于光生電子的傳輸,解釋了其光催化性能提高的原因。研究證實了水熱反應(yīng)中前驅(qū)體溶液濃度過高或過低(0.033M、0.099M)都會導(dǎo)致C-Zn Sn(OH)6結(jié)晶度的降低,晶格中的缺陷為光生載流子的復(fù)合提供了可能,從而降低了樣品的光催化性能,體系最佳反應(yīng)濃度為0.066M。利用改進(jìn)的Hummers法制備出氧化程度較高的GO,超聲剝離后獲得氧化石墨烯。通過對Zn Sn(OH)6進(jìn)行表面改性合成不同GO含量(0.1 5.0wt%)的GO-Zn Sn(OH)6復(fù)合材料,并采用光還原法獲得r GO-Zn Sn(OH)6復(fù)合光催化劑。利用FTIR、UV-vis DRS、PL等技術(shù)對r GO-Zn Sn(OH)6復(fù)合材料的物相、微觀結(jié)構(gòu)和光學(xué)性質(zhì)進(jìn)行了表征。研究發(fā)現(xiàn),2.0 wt%r GO-Zn Sn(OH)6相比于純凈的Zn Sn(OH)6(k=0.006min?1)表現(xiàn)出最佳的可見光吸收能力和顯著的催化效果(k=0.026 min?1),100min內(nèi)對MB溶液降解率達(dá)到93.2%,這是由于石墨烯與羥基錫酸鋅有著緊密的界面結(jié)合,在光催化反應(yīng)過程中石墨烯中的共軛鍵作為電子轉(zhuǎn)移通道,有效分離了光生電子-空穴對。
[Abstract]:Nanometer semiconductor materials as photocatalysts have a broad application prospect in the field of environment and energy. Zinc hydroxyethyl stannate (Zn-Zn-Sn-OHH6) is a new semiconductor photocatalytic material with typical perovskite-type crystal structure of face-centered cubic stacking, due to its special crystal structure. The abundant hydroxyl groups on the surface are conducive to the formation of hydroxyl radicals (OHs) with photogenerated holes, which can catalyze the degradation of biodegradable organic pollutants. In this paper, ZnSnOH6 micropowders with different morphologies were synthesized by hydrothermal method. The growth mechanism of different crystal structures was studied. Zn-SnOH6 composites modified by different carbon sources (glucose, graphene) were prepared, and the photocatalytic properties of Zn SnOH6 were improved. The main contents of this paper are as follows: using Ch _ 3COO _ (2) Zn _ (2) H _ 2O _ (2) Sn Cl _ (4) H _ (2) O _ (6) Na _ (OH) as raw material, Zn SnOH _ (6) nanocrystalline powders with controllable morphology were synthesized by hydrothermal method under 160oC condition. The crystal structure of Zn _ (SnOH) _ 6 was studied with different pH value and hydrothermal reaction time. The influence of micromorphology, dispersity and particle size. The results show that the crystal grows into a normal octahedron with the molar ratio of Zn2: OH-: Sn4 at 1:10:1, and the crystal grows into a cubic shape of 100nmg when the molar ratio of Zn2: OH-Sn4 is 1:6:1, which is highly dispersible. The ZnSnOH6 cubic powders with large specific surface area provide a large number of reactive sites for photocatalytic reaction, and thus exhibit remarkable photocatalytic activity. The prolongation of hydrothermal reaction time intensifies the agglomeration of Zn SnOH6 powders, reduces the contact area between the target degradation and the catalyst, and results in the decrease of the catalytic efficiency of Zn SnOHH6. The optimum reaction time is 16 h. Using glucose as carbon source, C doped Zn Sno OH 6 micropowders were synthesized by hydrothermal method, and their photocatalytic activity was characterized by degradation of MB solution (10 mg / L) under visible light. The samples of C-Zn SnOH6 with different C content (0.1 ~ 2.0wt) and different reaction system concentrations were characterized by means of XRDX, SEMX, FTIR, EDS-XPS and so on. The results showed that the sample of C-Zn SnHHH6 exhibited the best photocatalytic activity. The degradation rate of MB solution in 100min was up to 96.30.The degradation rate constant of C-Zn SnHH6 was 0.032 min ~ (-1), compared with that of pure Zn SnOH6 (0.006 min ~ (-1). The results showed that the crystallinity of Zn SnOH6 crystal was increased by doping C with C _ 1sN _ (284.8e V) chemical state in C ~ (2 +) -Zn ~ (2 +) Sn-OHH6 sample, and the results showed that C element in C ~ (1) Zn ~ (2 +) Sn-OHH _ (6) sample was doped with C _ (1) S ~ (2 +) ~ (28. 8) e V) to increase the crystallinity of Zn SnOH _ (6) crystal. The free carbon element is helpful to the photoelectron transport, which explains the improvement of photocatalytic performance. It has been proved that the high or too low concentration of precursor solution in hydrothermal reaction can decrease the crystallinity of C-Zn SnOH6, and the defects in lattice make it possible to compound photocarriers, thus reducing the photocatalytic performance of the sample. The optimum reaction concentration of the system was 0.066 M. High degree of oxidation was prepared by modified Hummers method, and graphene oxide was obtained by ultrasonic stripping. GO-Zn SnOH6 composite was synthesized by surface modification of Zn SnOH6 with different go content (0.1 ~ 5.0 wt), and the composite photocatalyst was obtained by photoreduction method. The phase, microstructure and optical properties of r GO-Zn SnN OHH6 composites were characterized by FTIR IR UV-vis DRS PL and other techniques. It was found that the optimum visible light absorption ability and remarkable catalytic effect of 2. 0 wt%r GO-Zn SnOH6 were better than that of pure Zn SnOH6 (0.006 min-1). The degradation rate of MB solution was 93. 2% in 100min. This was due to the close interface between graphene and zinc hydroxy stannate. The conjugated bonds in graphene were used as electron transfer channels during photocatalytic reaction, and photogenerated electron-hole pairs were effectively separated.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O643.36;TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳先安;王克剛;;用原子吸收法測定氯錫酸銣和氯錫酸銫中的鉀、銣、銫和錫[J];分析化學(xué);1983年04期
2 張淑云;錫酸鋇粉末及其制造方法[J];無機(jī)鹽工業(yè);1994年05期
3 董曉娜;宋曉東;鄭梯和;;納米錫酸鋅/ABS/PVC復(fù)合材料阻燃性能研究[J];現(xiàn)代塑料加工應(yīng)用;2007年01期
4 徐建中;焦運紅;屈紅強(qiáng);何勇武;蔡寧;尹麗麗;龐立欣;;錫酸鋅包覆碳酸鈣對聚氯乙烯的阻燃消煙作用[J];塑料;2006年02期
5 王建榮,唐小勇,歐育湘;錫酸鋅對軟質(zhì)聚氯乙烯的阻燃和抑煙作用[J];中國塑料;2003年04期
6 楊玲;;羥基錫酸鋅包覆氫氧化鎂對軟質(zhì)PVC燃燒性能的影響[J];消防科學(xué)與技術(shù);2010年08期
7 徐建中;胡珂;焦運紅;謝吉星;;兩種不同形貌羥基錫酸鋅晶體的合成與表征[J];無機(jī)鹽工業(yè);2011年03期
8 蘇虎;宋曉玲;黃東;包永忠;;水滑石和錫酸鋅復(fù)合改性增塑聚氯乙烯的燃燒特性[J];塑料助劑;2012年02期
9 徐建中;劉建州;謝吉星;屈紅強(qiáng);;均勻沉淀法制備錫酸鋅與錫酸鋅包覆納米碳酸鈣的研究[J];無機(jī)鹽工業(yè);2009年05期
10 張予東;李慶華;李賓杰;張治軍;;改性納米羥基錫酸鋅的制備及表征[J];河南大學(xué)學(xué)報(自然科學(xué)版);2006年01期
相關(guān)會議論文 前6條
1 焦運紅;李光明;徐建中;孟煥菊;李琳;;羥基錫酸銅微球?qū)涃|(zhì)PVC的阻燃及抑煙作用[A];2013年全國阻燃學(xué)術(shù)年會會議論文集[C];2013年
2 屈紅強(qiáng);武偉紅;李云鵬;賈彥波;徐建中;;錫酸鋅和羥基錫酸鋅對軟PVC的阻燃性能和熱性能的影響[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(7)[C];2007年
3 陳小霞;孫冉;蔣亞琪;謝兆雄;;形貌可控的錫酸鋅納米晶水熱法生長[A];中國化學(xué)會第27屆學(xué)術(shù)年會第04分會場摘要集[C];2010年
4 邵兵;高婷婷;侯曉;李志偉;張治軍;;CEPPA修飾納米羥基錫酸鋅的制備及其在聚氯乙烯中的應(yīng)用[A];2014年全國阻燃學(xué)術(shù)年會會議論文集[C];2014年
5 劉成龍;;論內(nèi)蒙黃崗礦區(qū)錫酸礦的賦存特點及某些分布規(guī)律[A];中國地質(zhì)科學(xué)院沈陽地質(zhì)礦產(chǎn)研究所文集(2)[C];1981年
6 林月緒;林深;羅明洪;劉嬌華;;硫摻雜錫酸鋅制備及其可見光催化性能[A];中國化學(xué)會第26屆學(xué)術(shù)年會無機(jī)與配位化學(xué)分會場論文集[C];2008年
相關(guān)碩士學(xué)位論文 前3條
1 雷君;羥基錫酸鋅及其復(fù)合材料的合成與光催化性能研究[D];鄭州大學(xué);2015年
2 陳小霞;錫酸鋅及其相關(guān)復(fù)合納米材料的制備、表征及應(yīng)用[D];福州大學(xué);2011年
3 王安麗;納米復(fù)合氧化銅和錫酸鉛類燃燒催化劑的制備及性能[D];中北大學(xué);2012年
,本文編號:2023982
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2023982.html