帶加熱功能的織物增強復合材料試制與性能研究
本文選題:加熱絲 + 融雪化冰。 參考:《天津工業(yè)大學》2017年碩士論文
【摘要】:復合材料在建筑、航空領域有著廣泛應用,但是結冰、積雪會嚴重影響其安全應用,因此快速有效、無損傷的清除這些冰雪,是一項十分重大的工作。本文綜述了當前常用的融雪化冰方式,在熱融雪法的基礎上,設計、試制了一種新型的帶加熱功能的織物增強復合材料,若用作建筑物屋頂和飛機機身、機翼的表層或表面材料,將預防暴雪、冰凍天氣對建筑物、航空等的影響。課題選擇12K、6K、3K碳纖維和康銅絲四種材料為加熱元件,設計、織造出五種加熱絲沿緯向分布的玻纖織物,并與不飽和聚酯樹脂復合,制成了共20塊復合板。然后對復合板進行通電,測試并分析了復合板內溫度場的分布以及影響復合板內溫度變化的因素,包括加熱絲的種類、功率值、加熱時間、加熱絲分布比例等因素。并對12K碳纖維和康銅絲作為加熱絲,與玻纖緯紗以1:3比例分布的復合材料板的拉伸力學性能作了測試分析,得出以下結論:(1)復合板內溫度分布取決于加熱絲的位置,溫度從加熱絲處向空白處傳遞,復合板內溫度值相對中軸線沿緯向呈對稱分布,沿經向呈高低起伏的鋸齒狀分布,相對中心位置對角線方向呈梯度分布。(2)在相同功率條件下,不同加熱絲的復合板溫度差值不大;通電功率與復合板溫度值呈正線性相關關系,同等條件下,功率越大,復合板溫度越大;隨著通電時間的增加,復合板短時間內溫度呈急劇增長,后逐漸增長緩慢,雖然呈上升趨勢,但基本趨于穩(wěn)定;相同功率下,不同分布比例的復合板可升高的溫度值比較接近,復合板內加熱絲分布越密集,復合板內溫度分布越均勻。(3)帶加熱功能的復合材料與不帶加熱絲的純玻纖復合材料相比,拉伸強度變化不大,拉伸彈性模量明顯減小,隨著通電時間的增加,帶加熱功能的復合材料拉伸強度減小,且加熱元件為康銅絲的比加熱元件為碳纖維的拉伸強度降低的更快,但是通電時間對復合板的彈性模量幾乎沒有影響。綜合考慮帶加熱功能的織物增強復合材料的熱學、力學性能,可選擇12K碳纖維作為加熱絲,加熱絲緯密為8根/10cm,將其單獨作為緯紗與玻纖緯紗間隔織入織物,制成帶加熱功能的織物增強復合材料,用于建筑、航空等領域的融雪化冰材料。
[Abstract]:Composite materials are widely used in the field of building and aviation, but icing and snow cover will seriously affect their safety application. Therefore, it is a very important task to remove these ice and snow quickly and effectively without damage. In this paper, a new type of fabric reinforced composite material with heating function is designed and manufactured, which can be used as roof of building and fuselage of aircraft. The surface or surface material of the wing will prevent the effects of blizzard, freezing weather on buildings, aviation, etc. In this paper, four kinds of materials (12K ~ 6K ~ 3K carbon fiber and copper wire) were selected as heating elements to design and weave five kinds of glass fiber fabrics distributed along the weft direction of heating silk, and to make 20 laminated sheets with unsaturated polyester resin. Then, the distribution of temperature field in the composite plate and the factors influencing the temperature change in the composite plate are tested and analyzed, including the type of heating wire, power value, heating time, distribution ratio of heating wire, and so on. The tensile mechanical properties of composite plate with 12K carbon fiber and copper wire as heating wire and glass fiber weft distributed in proportion of 1:3 are tested and analyzed. The following conclusion is drawn: 1) the temperature distribution in the composite plate depends on the position of the heating wire. The temperature is transferred from the heating wire to the blank. The temperature value in the composite plate is symmetrically distributed along the zonal direction relative to the central axis, zigzag distribution along the meridional direction, and gradient distribution in the diagonal direction relative to the center position under the same power condition. The temperature difference of the composite plate with different heating wire is small, the power of power and the temperature of the composite plate have a positive linear correlation, under the same conditions, the higher the power, the greater the temperature of the composite plate; with the increase of the time of electrification, The temperature of the composite plate increased sharply in a short period of time, then gradually increased slowly, although it showed an upward trend, it tended to be stable basically, and the temperature value of the composite plate with different distribution ratio was similar to that of the composite plate with the same power distribution. The denser the distribution of heating wire in the composite plate, the more uniform the temperature distribution in the composite plate. (3) compared with the pure glass fiber composite without heating wire, the tensile strength of the composite with heating function has little change, and the tensile modulus of elasticity is obviously reduced. The tensile strength of composites with heating function decreases with the increase of electric time, and the tensile strength of composites with heating element is decreased more quickly than that of carbon fiber with heating element of constant-copper wire, and the tensile strength of composite material with heating function decreases faster than that of carbon fiber with heating element. However, the time of electrification has little effect on the elastic modulus of the composite plate. Considering the thermal and mechanical properties of textile reinforced composites with heating function, 12K carbon fiber can be selected as heating wire, and the weft density of heating silk is 8 / 10 cm, which can be woven into fabric separately as the interval between weft and glass fiber weft. Fabric reinforced composites with heating function are made for snow melting and ice melting in building, aviation and other fields.
【學位授予單位】:天津工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TS106;TB33
【相似文獻】
相關期刊論文 前10條
1 呂立斌;荀勇;杜梅;;碳/;炀幙椢镌鰪姀秃喜牧系幕拘阅躘J];紡織導報;2006年09期
2 徐有明;胡榮仙;熊漢國;;竹塑增強復合材料的研究進展及加工現(xiàn)狀[J];木材工業(yè);2010年03期
3 趙鴻漢;;全球低碳經濟呼喚纖維增強復合材料輕量化 碳纖和玻纖增強復合材料是兩個不同層面的功能型輕量化材料[J];玻璃鋼;2011年04期
4 鄧軍;;產業(yè)用高性能樹脂基多軸向經編增強復合材料需求及發(fā)展探討[J];江蘇紡織;2011年12期
5 郭建輝;;“管狀機織物增強復合材料的工程應用研究”項目通過天津市教委驗收[J];天津工業(yè)大學學報;2012年01期
6 徐海燕;;經編多軸向針織物增強復合材料的研究進展[J];產業(yè)用紡織品;2012年10期
7 張賦;李旭東;;織物增強復合材料彈性常數(shù)的有限元法預測[J];機械工程材料;2014年04期
8 林均品,張勇,陳國良;骨架增強復合材料的微觀結構和性能[J];材料工程;2000年06期
9 高金花;李煒;;三維紡織結構增強復合材料的幾何模型[J];纖維復合材料;2006年04期
10 戴青春;胡紅;;緯編針織增強復合材料的拉伸性能[J];紡織學報;2008年01期
相關會議論文 前10條
1 李斌太;蔣詩才;張寶艷;邢麗英;陳祥寶;;Z向增強復合材料技術研究[A];復合材料——基礎、創(chuàng)新、高效:第十四屆全國復合材料學術會議論文集(上)[C];2006年
2 張紅梅;祁利民;肖永棟;;玻纖/聚丙烯混纖紗增強復合材料的研究[A];第十四屆玻璃鋼/復合材料學術年會論文集[C];2001年
3 陳良家;姚學鋒;岑松;;不同胞元對單向增強復合材料等效彈性常數(shù)預測的影響[A];北京力學會第20屆學術年會論文集[C];2014年
4 張永成;;碳/玻璃纖維雙增強復合材料在便攜式電子設備中的應用[A];中國電子學會化學工藝專業(yè)委員會第五屆年會論文集[C];2000年
5 王鵬飛;王俊勃;袁建暢;趙川;孫永奇;;織物增強復合材料的拉伸性能[A];第十三屆玻璃鋼/復合材料學術年會論文集[C];1999年
6 張發(fā);顧伯洪;孫寶忠;;平紋機織玄武巖增強復合材料面內動態(tài)壓縮行為有限元模擬[A];中國力學大會——2013論文摘要集[C];2013年
7 張凱;段慧玲;王建祥;;蜂窩的微觀組織和性能研究[A];慶祝中國力學學會成立50周年暨中國力學學會學術大會’2007論文摘要集(下)[C];2007年
8 林鵬;王長利;李焰;劉文祥;王等旺;;玻纖增強復合材料沖擊Hugoniot參數(shù)實驗研究[A];第九屆全國沖擊動力學學術會議論文集(下冊)[C];2009年
9 盧s,
本文編號:1999391
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1999391.html