離子束輔助沉積Ti-Cu-N納米復(fù)合膜
發(fā)布時(shí)間:2018-06-02 11:25
本文選題:離子束輔助沉積 + 納米復(fù)合膜; 參考:《沈陽(yáng)理工大學(xué)》2015年碩士論文
【摘要】:本文采用離子束輔助沉積技術(shù)在不銹鋼和高速鋼基體上制備Ti-Cu-N納米復(fù)合薄膜。用X射線光電子譜(XPS)、X射線衍射儀(XRD)、掃描電鏡(SEM)、透射電鏡(TEM)和納米壓痕儀等方法對(duì)制備的試樣進(jìn)行分析,研究基體基體脈沖偏壓和離子束離子源放電電流對(duì)薄膜的化學(xué)成分、結(jié)構(gòu)、形貌、硬度以及彈性模量的影響。分析了不同工藝參數(shù)對(duì)薄膜結(jié)構(gòu)及性能的影響。研究了離子束的轟擊作用對(duì)薄膜的成分、形貌以及硬度的影響。結(jié)果表明,在304不銹鋼基體上,不改變離子束能量的條件下,隨著基體脈沖偏壓的增加Cu含量先減少然后增加,在1.47at.%-2.75at.%之間變化,當(dāng)基體偏壓為-600V時(shí)最小值為1.47at.%,同時(shí)擇優(yōu)取向也由Ti N(111)轉(zhuǎn)變?yōu)門i N(220),所有偏壓下的Ti N都是面心立方結(jié)構(gòu)(B1-Na Cl)。薄膜的Cu2p峰均對(duì)應(yīng)純金屬Cu,晶粒的平均尺寸在11nm-16nm之間變化。硬度隨著基體偏壓的增加而減小,當(dāng)偏壓為-100V時(shí),薄膜硬度達(dá)到最大值:27.2GPa。在M2高速鋼基體上沉積Ti-Cu-N納米復(fù)合薄膜,在離子束的轟擊作用下,隨著基體偏壓在-100V到-900V之間的改變,薄膜中Cu含量在1.05at.%-2.50at.%之間變化。同時(shí),薄膜的結(jié)構(gòu)也受到影響,在-100V出現(xiàn)Ti N(111)擇優(yōu)取向,當(dāng)基體偏壓增加到-300V時(shí),擇優(yōu)取向改變?yōu)門i N(220)。薄膜的Cu2p峰均對(duì)應(yīng)純金屬Cu,晶粒的平均尺寸在11nm-17nm之間變化。硬度和彈性模量隨著基體偏壓的增加而增大,當(dāng)偏壓為-900V時(shí),薄膜硬度和彈性模量達(dá)到最大值,分別為:29.92GPa、476GPa。在304不銹鋼基體上,基體偏壓為-600V時(shí),改變離子源放電電流時(shí)薄膜中Cu含量在1.19at.%-1.80at.%之間發(fā)生變化。同時(shí),離子源放電電流在10A、20A、30A、40A時(shí),只存在Ti N(220)擇優(yōu)取向。薄膜的Cu2p峰均對(duì)應(yīng)純金屬Cu。隨著離子源放電電流的增加,硬度和彈性模量也發(fā)生改變,離子源放電電流為10A時(shí),Cu含量為1.50at.%,薄膜硬度和彈性模量達(dá)到最大值:39.73GPa,535.85GPa。在基體M2高速鋼上基體上,基體脈沖偏壓為-600V時(shí),隨著離子源放電電流的變化,Ti-Cu-N納米復(fù)合薄膜中Cu含量在1.138-1.55at.%之間變化。離子源放電電流從10A增加到40A時(shí),只存在Ti N(220)擇優(yōu)取向。隨著離子源放電電流增加,薄膜的表面形貌也發(fā)生改變,大顆粒數(shù)量明顯減少。薄膜的硬度和彈性模量隨著離子源放電電流的增加先增加后減少,并在離子源放電電流為30A時(shí)達(dá)到最大值39.24GPa和544.59GPa,此時(shí)Cu含量1.157 at.%。
[Abstract]:In this paper, Ti-Cu-N nanocomposite films were prepared on stainless steel and high speed steel substrates by ion beam assisted deposition. The prepared samples were analyzed by means of X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation (TEM). The chemical composition of the films was studied by the substrate pulse bias voltage and ion source discharge current of ion beam. Effects of structure, morphology, hardness and elastic modulus. The effects of different process parameters on the structure and properties of the films were analyzed. The effects of ion beam bombardment on the composition, morphology and hardness of the films were studied. The results show that the Cu content decreases first and then increases with the increase of the pulse bias voltage on 304 stainless steel substrate, and changes between 1.47at.-2.75at.%. When the substrate bias voltage is -600V, the minimum value is 1.47at.and the preferred orientation is also changed from Tini (111) to 220U. The tin with all bias voltages is B1-Na Cln with a face-centered cubic structure. The Cu2p peaks of the films all correspond to pure metal Cu and the average grain size varies from 11nm-16nm to 11nm-16nm. The hardness decreases with the increase of the substrate bias voltage. When the bias voltage is -100V, the hardness of the film reaches the maximum value of: 27.2GPa. Ti-Cu-N nanocomposite films were deposited on M2 high speed steel substrates. Under the bombardment of ion beam, the Cu content in the films varied from -100V to -900V with the change of substrate bias voltage between -100V and -900V, and the Cu content in the films varied from 1.05 at.-2.50at.%. At the same time, the structure of the thin films was also affected. The preferred orientation of the thin films appeared at -100V, and when the substrate bias increased to -300V, the preferred orientation changed to 220U. The Cu2p peaks of the films all correspond to pure metal Cu and the average grain size varies from 11nm-17nm to 11nm-17nm. The hardness and elastic modulus of the film increase with the increase of the substrate bias voltage. When the bias voltage is -900V, the hardness and elastic modulus of the film reach the maximum value, which is: 1. 29. 92 GPA 476 GPA, respectively. When the substrate bias voltage is -600V, the Cu content of the film changes between 1.19at.-1.80at.% when the discharge current of ion source is changed. At the same time, when the discharge current of the ion source is 10 A ~ (20) A ~ (2 +) ~ (30) A ~ (40 A), there is only a preferential orientation of Ti ~ (2 +) _ (220). The Cu2p peaks of the films all correspond to pure metal Cu. With the increase of discharge current of ion source, hardness and elastic modulus also change. When the discharge current of ion source is 10A, the content of Cu is 1.50at.The hardness and elastic modulus of the film reach the maximum value of 39.73GPa55.85GPa. The Cu content in Ti-Cu-N nanocomposite films varied from 1.138-1.55at.When the substrate pulse bias was -600V on the substrate of M2 high speed steel, the Cu content in Ti-Cu-N nanocomposite films varied with the change of ion source discharge current. When the discharge current of ion source is increased from 10A to 40A, there is only a preferred orientation of Ti _ N _ 2O _ 220A. With the increase of the discharge current of ion source, the surface morphology of the film also changed, and the number of large particles decreased obviously. The hardness and elastic modulus of the films increased first and then decreased with the increase of the discharge current of ion source, and reached the maximum 39.24GPa and 544.59 GPA when the discharge current of the ion source was 30 A. the Cu content was 1.157 at.
【學(xué)位授予單位】:沈陽(yáng)理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張宇峰,張溪文,任兆杏,韓高榮;離子束輔助薄膜沉積[J];材料導(dǎo)報(bào);2003年11期
2 王福貞;離子鍍技術(shù)的發(fā)展[J];國(guó)外金屬熱處理;1997年02期
3 王利;程鑫彬;王占山;唐騏;范濱;;離子束輔助沉積薄膜工藝[J];紅外與激光工程;2007年06期
4 黃美東,孫超,林國(guó)強(qiáng),董闖,聞立時(shí);脈沖偏壓電弧離子低溫沉積TiN硬質(zhì)薄膜的力學(xué)性能[J];金屬學(xué)報(bào);2003年05期
5 李鑄國(guó);俞海良;吳毅雄;三宅正司;;低能量離子束輻照磁控濺射沉積超硬質(zhì)nc-TiN/nc-Cu納米復(fù)合膜[J];金屬學(xué)報(bào);2006年09期
6 陳寶清;朱英臣;王斐杰;王玉魁;;磁控濺射離子鍍技術(shù)和鋁鍍膜的組織形貌、相組成及新相形成物理冶金過(guò)程的研究[J];熱加工工藝;1984年05期
7 黎明,溫詩(shī)鑄;納米壓痕技術(shù)及其應(yīng)用[J];中國(guó)機(jī)械工程;2002年16期
,本文編號(hào):1968586
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1968586.html
最近更新
教材專著