天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

氧化釕復(fù)合電極材料的制備及其電化學(xué)性能研究

發(fā)布時(shí)間:2018-06-01 06:18

  本文選題:RuO2/SiC-NWs + RuO2/nano-C ; 參考:《浙江理工大學(xué)》2015年碩士論文


【摘要】:新型電化學(xué)儲(chǔ)能裝置超級(jí)電容器的電極材料是該裝置發(fā)揮優(yōu)異性能的關(guān)鍵,目前較受關(guān)注的電極材料有碳、過渡金屬氧化物和導(dǎo)電聚合物三大類。其中以過渡金屬氧化物RuO2為電極材料的法拉第準(zhǔn)電容器因具有高比電容量、低電阻率等優(yōu)良特性而受到極大的關(guān)注,但各類材料各自的缺陷又限制了它們的應(yīng)用。因此,研究多針對(duì)氧化釕與碳、其它過渡金屬氧化物、導(dǎo)電聚合物以及其他材料的復(fù)合,以達(dá)到協(xié)同作用來提高材料電化學(xué)性能,,這已經(jīng)成為超級(jí)電容器電極材料的重要發(fā)展方向。 本論文采用醇鹽水解法,制備了兩種體系的氧化釕復(fù)合電極材料。一是將乙醇釕水解制得的RuO2與納米石墨復(fù)合,制備新型納米R(shí)uO2/nano-C復(fù)合電極材料;二是將乙醇釕水解制得的RuO2與碳化硅納米線復(fù)合,制備RuO2/SiC-NWs復(fù)合電極材料。在此基礎(chǔ)上,深入研究了這兩種復(fù)合電極材料的制備工藝、組織形貌以及不同釕含量對(duì)電化學(xué)性能的影響規(guī)律。主要的研究結(jié)論如下: (1)通過有機(jī)物高溫分解法,將酚醛樹脂進(jìn)行碳化處理制備納米石墨。經(jīng)過XRD和SAED分析表明所制備的納米石墨包括結(jié)晶部分和非結(jié)晶部分。而通過TEM分析表明納米石墨粒子的直徑非常小,呈圓球狀,尺寸在20~50nm之間且分布均勻。 (2)采用溶膠凝膠法和碳熱還原法,以正硅酸乙酯和活性炭分別作為硅源和碳源制備碳化硅納米線。通過XRD和SEM分析表明所制備的碳化硅納米線主要是念珠狀碳化硅納米線,念珠狀碳化硅納米線長度在150μm左右,由兩部分組成,中間是直桿形的結(jié)晶碳化硅納米線,直徑在20nm左右,在其表面上包裹著非晶的念珠狀小球,小球的直徑在100nm左右。 (3)RuO2/nano-C和RuO2/SiC-NWs兩種復(fù)合材料的SEM和TEM顯示,在乙醇釕的水解反應(yīng)過程中,生成的氧化釕沉積在納米石墨和碳化硅納米線的表面,并且是以非晶態(tài)的形式存在。并且隨著兩種復(fù)合材料中釕含量的增加,氧化釕在納米石墨和碳化硅納米線表面上的分散量逐漸增多。在釕含量為12.0wt.%的復(fù)合材料中,有大量的氧化釕均勻地沉積在納米石墨和碳化硅納米線的表面上。FTIR的分析則表明RuO2/SiC-NWs復(fù)合材料中的Si-Ru之間相互作用成鍵,提高了RuO2/SiC-NWs復(fù)合材料的穩(wěn)定性。 (4)RuO2/nano-C和RuO2/SiC-NWs兩種復(fù)合材料均有較好的電容性能。隨著釕含量的增加,復(fù)合電極材料的循環(huán)伏安曲線峰面積增大,即電容量增大,當(dāng)釕含量為12.0wt.%時(shí),制得的RuO2/nano-C和RuO2/SiC-NWs復(fù)合材料的比電容量分別達(dá)到了314F·g-1和393F·g-1。阻抗曲線則表明RuO2/nano-C和RuO2/SiC-NWs復(fù)合材料包括碳雙電層電容和氧化釕準(zhǔn)電容兩種電化學(xué)行為,并且具有優(yōu)良的阻抗特性,其等效串聯(lián)電阻(ESR)值隨著兩種復(fù)合材料中釕含量的增加,等效串聯(lián)電阻呈減小趨勢。釕含量為12.0wt.%的RuO2/nano-C和RuO2/SiC-NWs復(fù)合材料經(jīng)過1000次充放電循環(huán)的比電容損失分別為0.81%和0.76%,具有較高的電化學(xué)穩(wěn)定性。
[Abstract]:The electrode material of the new electrochemical energy storage device supercapacitor is the key to the performance of the device. At present, there are three major categories of carbon, transition metal oxide and conductive polymer. The Faraday quasi capacitor with transition metal oxide RuO2 as the electrode material has high specific capacitance, low resistivity and so on. Great attention has been paid to the excellent properties, but their applications are limited by the defects of various materials. Therefore, the research is aimed at the combination of ruthenium oxide and carbon, other transition metal oxides, conductive polymers and other materials to achieve synergism to improve the electrochemical properties of materials. This has become a supercapacitor electrode material. The important direction of development.
In this paper, two kinds of ruthenium oxide composite electrode materials are prepared by the solution of alcohol and brine. One is to compounded the RuO2 and nano graphite prepared by the hydrolysis of ruthenium ethanol, and to prepare a new nano RuO2/nano-C composite electrode material. The two is to compounded the RuO2 and the silicon carbide nanowires prepared by the hydrolysis of ruthenium ethanol, and to prepare the RuO2/SiC-NWs composite electrode material. On this basis, the preparation process of the two composite electrode materials, the microstructure and the influence of different ruthenium content on the electrochemical properties are studied. The main conclusions are as follows:
(1) the nanoscale graphite was prepared by carbonization by high temperature decomposition of organic matter. The results of XRD and SAED analysis showed that the prepared nanoscale graphite included crystalline and non crystalline parts. By TEM analysis, the diameter of the graphite nanoparticles was very small, and the size of the particles was evenly distributed between 20~50nm and 20~50nm.
(2) the sol-gel method and carbon thermal reduction method were used to prepare silicon carbide nanowires using ethyl orthosilicate and activated carbon as silicon source and carbon source respectively. By XRD and SEM analysis, the silicon carbide nanowires were mainly beads like SiC nanowires, and the length of the Candida SiC nanowires was about 150 m, consisting of two parts, and the middle was straight. The crystalline silicon carbide nanowires with a diameter of 20nm are coated with amorphous beads, and the diameter of the spheres is about 100nm.
(3) SEM and TEM of two composite materials of RuO2/nano-C and RuO2/SiC-NWs show that ruthenium oxide deposited on the surface of nano graphite and silicon carbide nanowires in the process of hydrolysis of ruthenium, and exists in the form of amorphous state. And with the increase of ruthenium content in the two composite materials, ruthenium oxide is in nanoscale graphite and silicon carbide. A large amount of ruthenium oxide is deposited on the surface of nano graphite and silicon carbide nanowires on the surface of Ru content 12.0wt.%. The analysis of.FTIR on the surface of nano graphite and SiC nanowires shows that the interaction of Si-Ru in the RuO2/SiC-NWs composites is a bond, which improves the stability of the RuO2/SiC-NWs composites.
(4) the two composite materials of RuO2/nano-C and RuO2/SiC-NWs have good capacitive performance. With the increase of ruthenium content, the peak area of cyclic volt ampere curve of the composite electrode increases, that is, the electric capacity increases. When the ruthenium content is 12.0wt.%, the specific capacity of the prepared RuO2/nano-C and RuO2/SiC-NWs composites reaches 314F g-1 and 393F. G-1, respectively. The impedance curve shows that the RuO2/nano-C and RuO2/SiC-NWs composites include two electrochemical behaviors of carbon double layer capacitance and ruthenium oxide quasi capacitance, and have excellent impedance characteristics. The equivalent series resistance (ESR) value decreases with the increase of ruthenium content in the two composites, and the ruthenium content is 12.0wt.% RuO2/n. The specific capacitance losses of ano-C and RuO2/SiC-NWs composites after 1000 charge discharge cycles were 0.81% and 0.76% respectively, and the electrochemical stability was high.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33;TM53

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 邢益榮;硅懸鍵表面態(tài)的晶向關(guān)系——光電子發(fā)射研究[J];半導(dǎo)體學(xué)報(bào);1987年01期

2 汪樹軍,劉慶國;酚醛樹脂碳化產(chǎn)物作為鋰離子電池碳電極材料(I)──樹脂碳化產(chǎn)物的組成和結(jié)構(gòu)參數(shù)測試分析[J];北京科技大學(xué)學(xué)報(bào);2000年06期

3 孫貴磊;;納米石墨的制備方法及機(jī)理與應(yīng)用研究進(jìn)展[J];材料開發(fā)與應(yīng)用;2011年04期

4 王曉峰,王大志,梁吉;氧化釕/活性炭超級(jí)電容器電極材料的研制[J];稀有金屬材料與工程;2003年06期

5 陳桂華;楊輝;梁華定;葛昌華;;鈦醇鹽水解-沉淀法制備納米二氧化鈦粉體(英文)[J];稀有金屬材料與工程;2010年S2期

6 李祥;甘衛(wèi)平;馬賀然;;活性碳/氧化釕復(fù)合電極材料的制備及性能研究[J];稀有金屬材料與工程;2012年04期

7 白朔,成會(huì)明,蘇革,魏永良,沈祖洪,周本濂;啞鈴形碳化硅晶須的制備與表征[J];材料研究學(xué)報(bào);1999年03期

8 白朔,成會(huì)明,蘇革,魏永良,沈祖洪,周本濂;啞鈴形碳化硅晶須的微觀結(jié)構(gòu)分析[J];材料研究學(xué)報(bào);2000年05期

9 白朔,成會(huì)明,蘇革,魏永良,沈祖洪,周本濂;啞鈴形碳化硅晶須生長的機(jī)理 [J];材料研究學(xué)報(bào);2002年02期

10 莊新國,楊裕生,楊冬平,嵇友菊,唐致遠(yuǎn);表面官能團(tuán)對(duì)活性炭性能的影響[J];電池;2003年04期



本文編號(hào):1963159

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1963159.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8cd53***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
午夜日韩在线观看视频| 日韩成人中文字幕在线一区| 1024你懂的在线视频| 久久永久免费一区二区| 东京热电东京热一区二区三区| 国产伦精品一一区二区三区高清版| 91日韩欧美在线视频| 国产又粗又深又猛又爽又黄| 成人亚洲国产精品一区不卡 | 色播五月激情五月婷婷| 日韩aa一区二区三区| 日韩日韩日韩日韩在线| 国产不卡一区二区四区| 日韩一区二区三区在线日| 久久精视频免费视频观看| 精品丝袜一区二区三区性色| 老司机激情五月天在线不卡| 国产成人精品久久二区二区| 亚洲国产av精品一区二区| 91福利视频日本免费看看| 国产水滴盗摄一区二区| 亚洲二区欧美一区二区 | 高清一区二区三区大伊香蕉| 韩日黄片在线免费观看| 午夜久久精品福利视频| 精品人妻一区二区三区在线看 | 人体偷拍一区二区三区| 国产精品视频第一第二区| 亚洲免费观看一区二区三区| 欧美性猛交内射老熟妇| 久久国产精品亚州精品毛片| 国产精品亚洲一级av第二区| 在线观看视频日韩精品| 2019年国产最新视频| 狠色婷婷久久一区二区三区| 国产传媒精品视频一区| 欧美激情一区=区三区| 人妻亚洲一区二区三区| 国产精品午夜福利免费阅读 | 国产精品亚洲综合色区韩国| 91在线爽的少妇嗷嗷叫|