轎車用纖維織物樹脂復(fù)合材料懸架彈簧的正向設(shè)計(jì)及其性能研究
本文選題:復(fù)合材料懸架彈簧 + 纖維織物。 參考:《吉林大學(xué)》2017年碩士論文
【摘要】:復(fù)合材料懸架彈簧與傳統(tǒng)金屬彈簧相比具有重量輕、耐腐蝕、疲勞性能好等優(yōu)點(diǎn),在當(dāng)前汽車輕量化發(fā)展趨勢下,具有很大的應(yīng)用前景。本文通過有限元分析結(jié)合實(shí)驗(yàn)的方法對復(fù)合材料懸架彈簧進(jìn)行了研究,主要內(nèi)容和結(jié)論如下:(1)分析了復(fù)合材料的彈性力學(xué),給出了單向復(fù)合材料、正交織物復(fù)合材料的彈性常數(shù)計(jì)算公式以及復(fù)合材料懸架彈簧剛度的計(jì)算公式;建立了以纖維織物和含聚氨酯芯為增強(qiáng)體的復(fù)合材料懸架彈簧的幾何模型和有限元模型。(2)采用有限元方法分析了復(fù)合材料懸架彈簧簧絲截面上、鋪層間、以及鋪層內(nèi)的應(yīng)力分布規(guī)律,對彈簧潛在失效位置進(jìn)行了判斷;提出了復(fù)合材料懸架彈簧剛度和強(qiáng)度的有限元分析方法。(3)模擬分析了不同纖維體積分?jǐn)?shù)、不同聚氨酯芯直徑、不同鋪層角度、不同纖維種類以及混層的復(fù)合材料懸架彈簧,結(jié)果表明:1、隨著纖維體積分?jǐn)?shù)的增加,復(fù)合材料懸架彈簧剛度近似呈線性增加,同時(shí),彈簧剛度重量比(p/m)也增加,復(fù)合材料利用率提高。2、保持線徑為9.3mm的前提下,有無聚氨酯芯的復(fù)合材料懸架彈簧剛度相同,但有聚氨酯芯復(fù)合材料懸架彈簧有更高的強(qiáng)度;當(dāng)聚氨酯芯直徑在1mm-3mm范圍內(nèi)變化時(shí),復(fù)合材料懸架彈簧剛度、強(qiáng)度變化不明顯,當(dāng)聚氨酯芯直徑增加至5mm時(shí),彈簧剛度、強(qiáng)度下降明顯;聚氨酯芯為4mm的復(fù)合材料懸架彈簧剛度重量比(p/m)最大,材料利用率最高。3、隨著鋪層角度從0°增加到45°,復(fù)合材料懸架彈簧剛度、強(qiáng)度均增大。4、在鋪層角為45°時(shí),T300碳纖維復(fù)合材料懸架彈簧剛度遠(yuǎn)大于玄武巖纖維和S2玻璃纖維復(fù)合材料懸架彈簧,但其容易發(fā)生壓縮失穩(wěn);當(dāng)鋪層角度小于32°時(shí),T300碳纖維復(fù)合材料懸架彈簧壓縮失穩(wěn)現(xiàn)象消失;與T300碳纖維和S2玻璃纖維復(fù)合材料懸架彈簧相比,玄武巖纖維復(fù)合材料懸架彈簧具有更好的綜合性能。5、T300碳纖維、玄武巖纖維混層復(fù)合材料懸架彈簧結(jié)合了純T300碳纖維和純玄武巖纖維復(fù)合材料懸架彈簧的優(yōu)點(diǎn),是理想的復(fù)合材料懸架彈簧形式。(4)實(shí)驗(yàn)得到以連續(xù)玄武巖纖維布和聚氨酯芯為增強(qiáng)體的復(fù)合材料懸架彈簧,其壓縮性能測試結(jié)果表明:1、復(fù)合材料懸架彈簧壓縮載荷與位移近似成線性相關(guān);模擬計(jì)算彈簧剛度值與實(shí)驗(yàn)計(jì)算值相比誤差在10%以內(nèi),且實(shí)驗(yàn)值稍大于模擬值。2、纖維體積分?jǐn)?shù)為40%的復(fù)合材料懸架彈簧剛度大于纖維體積分?jǐn)?shù)為30%的復(fù)合材料懸架彈簧;鋪層角為45°的復(fù)合材料懸架彈簧剛度遠(yuǎn)大于鋪層角為0°的復(fù)合材料懸架彈簧;3、復(fù)合材料懸架彈簧試樣從自由狀態(tài)壓縮至壓并狀態(tài),未出現(xiàn)破壞失效,與模擬分析結(jié)果相一致。4、復(fù)合材料懸架彈簧成形后,第1次和第2次壓縮后,彈簧自由高度和彈簧剛度都有不同程度的下降,但隨著壓縮次數(shù)的增加,彈簧自由高度和剛度趨于穩(wěn)定。
[Abstract]:Compared with traditional metal springs, composite suspension springs have the advantages of light weight, corrosion resistance and good fatigue performance. In this paper, the composite suspension spring is studied by means of finite element analysis and experiment. The main contents and conclusions are as follows: (1) the elastic mechanics of composite material is analyzed, and the unidirectional composite material is given. The formula of elastic constant of orthogonal fabric composite material and the formula of spring stiffness of composite material suspension; The geometric model and finite element model of composite suspension spring with fiber fabric and polyurethane core as reinforcements are established. The potential failure position of the spring is judged by the stress distribution in the layer, and the finite element analysis method of stiffness and strength of composite suspension spring is put forward. The different fiber volume fraction and the diameter of polyurethane core are simulated and analyzed. The results show that the stiffness of composite suspension spring increases linearly with the increase of fiber volume fraction, and the stiffness / weight ratio of spring to mass is also increased with the increase of fiber volume fraction. The stiffness of composite suspension spring with or without polyurethane core is the same, but the strength of composite suspension spring with polyurethane core is higher than that with polyurethane core composite suspension spring. When the diameter of polyurethane core changes in the range of 1mm-3mm, the stiffness and strength of composite suspension spring do not change obviously. When the diameter of polyurethane core increases to 5mm, the spring stiffness and strength decrease obviously. The composite suspension spring with polyurethane core (4mm) has the largest stiffness / weight ratio (p / m) and the highest material utilization ratio of .3.The stiffness of composite suspension spring increases from 0 擄to 45 擄with the increase of the laying angle. The stiffness of the suspension spring of T300 carbon fiber composite is much larger than that of the suspension spring of basalt fiber and S2 glass fiber composite material, but the compression instability is easy to occur when the laying angle is 45 擄. When the pawn layer angle is less than 32 擄, the compressive instability of T300 carbon fiber composite suspension spring disappears, compared with that of T300 carbon fiber and S2 glass fiber composite suspension spring, The suspension spring of basalt fiber composite material has better comprehensive performance. The composite suspension spring of basalt fiber composite layer combines the advantages of pure T300 carbon fiber and pure basalt fiber composite suspension spring. It is an ideal composite suspension spring form. 4) the composite suspension spring with continuous basalt fiber cloth and polyurethane core as reinforcement was obtained by experiments. The compression performance test results show that the compression load of composite suspension spring is approximately linear related to displacement, and the error between the simulated spring stiffness value and the experimental value is less than 10%. The experimental value is slightly larger than the simulated value. 2. The stiffness of composite suspension spring with 40% fiber volume fraction is larger than that of composite suspension spring with fiber volume fraction of 30%. The stiffness of composite suspension spring with 45 擄laminated angle is much greater than that with 0 擄laminated composite suspension spring, and the composite suspension spring specimen is compressed from free state to compression state without failure. In accordance with the results of the simulation analysis, the free height and stiffness of the spring decreased in varying degrees after the first and second compression of the composite suspension spring, but with the increase of the compression times, the free height of the spring and the stiffness of the spring decreased in varying degrees after the forming of the composite suspension spring. Spring free height and stiffness tend to stabilize.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U463.334;TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 皮亞南,劉燕霞,李和平;彈簧的應(yīng)用與設(shè)計(jì)計(jì)算[J];鍛壓機(jī)械;1999年02期
2 黃炳醒,祁更新;低溫彈簧材料及其敏感元件的研究[J];稀有金屬;1988年04期
3 穆良駿;劉存德;;螺旋型復(fù)合彈簧的研制[J];重型機(jī)械;1988年09期
4 彭希仁;鈦合金彈簧[J];航空工藝技術(shù);1989年02期
5 ;重介質(zhì)搖動(dòng)槽機(jī)械性能研究(續(xù))[J];有色金屬(冶煉部分);1973年04期
6 張林桂;;關(guān)于振動(dòng)供料器的研究(之四)——中間彈簧的減振效果[J];陜西科技大學(xué)學(xué)報(bào);1985年01期
7 ;重介質(zhì)d動(dòng)槽機(jī)械性能研究(續(xù))[J];有色金屬;1973年04期
8 劉瑞堂;中口徑自動(dòng)艦炮輸彈簧失效原因分析[J];哈爾濱船舶工程學(xué)院學(xué)報(bào);1987年03期
9 高榮元;圓柱螺旋壓縮彈簧的設(shè)計(jì)與計(jì)算[J];冶金設(shè)備;1984年05期
10 李家梅;濕式盤式彈簧制動(dòng)器及其應(yīng)用[J];礦冶;1995年02期
相關(guān)會議論文 前6條
1 丁濤;陳光雄;朱e,
本文編號:1956280
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1956280.html