基于二氧化錳納米片構建的功能性納米材料與性能研究
本文選題:二氧化錳納米片 + 有機無機雜化; 參考:《廣東工業(yè)大學》2015年博士論文
【摘要】:納米片是一種新型的二維納米材料。大多無機層狀化合物可通過剝離獲得分散的單層納米片。剝離得到的單層納米片常常呈現(xiàn)正電性或者負電性,可以作為組裝新型納米材料的基本單元。在本研究論文中,以二氧化錳納米片為基本構建單元,通過不同的合成技術,控制合成以二氧化錳納米片為基本單元組成的各種結構錳氧化物材料,并且結構各異的氧化錳材料在能源(二甲醚催化燃燒)、環(huán)境保護(廢水處理)以及能源儲存設備等方面表現(xiàn)出很好的應用前景。本論文主要研究內(nèi)容及結果有以下幾個方面:1、采用插層組裝法制備了大層間距的有機無機雜化層狀氧化錳材料。兩步插層法主要包括,將超聲剝離得到的層狀氧化錳納米片與CTAB(十六烷基三甲基溴化銨)進行靜電組裝,得到有機分子插層結構的烷基銨陽離子-二氧化錳(CTAB-MO);隨后通過離子交換方式,將羥基鋁陽離子引入到層狀氧化錳的層間,得到有機-無機復合改性層狀氧化錳材料CTAB-Al-MO。利用X射線衍射(XRD)、熱重-差熱分析(TG-DTA)、透射電鏡(TEM)和傅立葉紅外光譜(FTIR)等技術,研究合成產(chǎn)物的層間結構特性。結果表明,所合成產(chǎn)物具有大層間距(1.59 nm)和大比表面積(161 m2/g);熱穩(wěn)定性較高,在空氣中300℃焙燒2 h后,仍然保持良好的層狀結構。我們還發(fā)現(xiàn),CTAB的加載量決定著復合產(chǎn)物CTAB-Al-MO中的鋁含量。當復合材料應用到污水處理中時,發(fā)現(xiàn)復合材料對甲基橙模擬染料具有較高的去除率。5min時,脫色率達到95%。研究結果對進一步了解有機-無機復合改性層狀二氧化錳的結構及其應用具有很重要的意義。研究結果發(fā)表在Journal of Solid State Chemistry (2013,198,371-378)上。2、采用剝離組裝法和原位氧化還原技術制備了金屬氧化物(氧化鋁)層柱氧化錳多孔材料,并將其應用于新型清潔能源二甲醚的催化燃燒反應。本研究的效果是將具有良好穩(wěn)定性的氧化鋁作為柱撐劑,通過化學方法對層狀氧化錳進行插層組裝,得到高熱穩(wěn)定性(≥500℃)的氧化鋁柱層狀氧化錳多孔材料。層柱氧化錳多孔材料在空氣中400℃焙燒3h后仍保持良好的層狀結構,層間距為0.67nm。當將層柱氧化錳多孔材料應用于二甲醚催化燃燒反應時,發(fā)現(xiàn)其具有更高的低溫催化燃燒活性和穩(wěn)定性。起燃溫度T10%降至140℃,完全轉化溫度T90%為149℃;在170℃下,200h內(nèi)保持二甲醚轉化率90%。O2-TPD, XPS等分析結果表明,層柱氧化錳催化劑具有豐富的氧物種,其中低溫和中溫活性氧物種在二甲醚催化燃燒反應中起了至關重要的作用;與此同時,氧化鋁柱撐劑能夠促進這些氧物種的遷移。瞬態(tài)響應技術結果證明,氧化錳催化劑表面晶格氧(Mn=O)在二甲醚的催化燃燒反應中被消耗,繼而由氣相氧再生補充。研究結果發(fā)表在Microporous and Mesoporous Materials (2013,181,105-110)上。3、二氧化錳的傳統(tǒng)合成技術常常通過二價錳離子與高錳酸根的氧化還原反應。本研究中,二氧化錳納米片直接作為反應材料,取代了傳統(tǒng)法中的高錳酸鹽或錳鹽,通過水熱技術合成特殊枝狀結構的氧化錳材料。多枝狀的β-MnO2的制備主要通過兩個步驟,包括用二氧化錳納米片輔助水熱在160℃下24小時合成多枝狀γ-MnOOH前軀體和在空氣中經(jīng)400℃煅燒處理所獲得的γ-MnOOH前軀體。煅燒后得到的枝狀β-MnO2具有特殊的端部結構,即具有凹陷的開放端和錐形的封閉端。組裝和脫落機制的提出解釋了特殊枝狀結構的形成。此外,合成時通過控制反應體系的pH值或者加入一定量的表面活性劑SDBS作為反應物,可生成一維棒狀和枝狀產(chǎn)物,從而實現(xiàn)y-MnOOH枝狀結構和一維棒狀結構的選擇性生長。研究成果發(fā)表在Materials Letters (2012,79288-291)上。4、在NaOH-乙二醇回流體系,以PVP為表面活性劑,H2O2為氧化劑,簡單快捷(1h)地合成由厚度約為10nm的二維納米片組裝成的氧化錳納米花球,花球直徑為300-500 nm。系統(tǒng)地研究了各種合成因素,如反應物的用量和反應時間等對產(chǎn)物的影響;發(fā)現(xiàn)OH'/Mn2+的摩爾比在形成高結晶度的有序的3D二氧化錳納米結構起了至關重要的作用。結構表征表明,所合成的二氧化錳納米結構呈現(xiàn)出良好的介孔結構,孔徑約為20nm。由于納米花的納米尺寸效應和獨特的開放式結構,使其具有優(yōu)越的吸附性能、電化學性能。吸附時間為10min時,Birnessite型Mn02對麗春紅的脫色率達到了95%,達到快速脫色的效果。掃描速率為2mVs-1,樣品Birnessite型Mn02比電容計算值為191F/g。雖然Mn02花形微球的合成已有報道,但尋求經(jīng)濟、簡單易行、環(huán)境友好的可控合成路徑仍然具有非常重要的研究意義。據(jù)我們所知,在本研究中首次報道采用多元醇回流法制備3D二氧化錳納米結構。研究成果發(fā)表在Industrial and Engneering Chemistry Research (2013,52,9586-9593)上。5、采用了二氧化錳納米片輔助水熱法和原位聚合法構建單分散的二氧化錳/聚苯胺同軸納米線(MNW/PANI),取代了傳統(tǒng)水熱法中的二價錳離子和高錳酸鹽氧化還原合成法。所合成的高度交織納米網(wǎng)狀結構的二氧化錳/聚苯胺同軸構象為高性能電容器的組裝提供了良好的電極材料。MNW/PANI (14h)在掃描速率2 mV s-1下比電容值高達485 mF/cm2,遠遠超過了二氧化錳納米線的比電容(263 mF/cm2)和聚苯胺粉體的比電容(39.75 mF/cm2)。此外,研究中以聚乙烯醇/磷酸(PVA/H3PO4)為固態(tài)電解質,采用一種簡易方法成功設計組裝了以二氧化錳/聚苯胺(MNW/PANI)為電極料的超級電容器。本章所組裝的電容器的漏電流值非常小,穩(wěn)定值為20.1μA。并且表現(xiàn)出優(yōu)異的低自放電特性,經(jīng)過25小時自放電后達到一個穩(wěn)定的輸出電壓值0.42 V。與大多柔性電容器相比,本研究合成的固態(tài)電容器具有優(yōu)良的電化學性能,低自放電特性以及高穩(wěn)定性。
[Abstract]:Nanoscale is a new type of two-dimensional nanomaterial. Most inorganic layered compounds can be stripped to obtain dispersed monolayer nanoscale. The stripped single layer nanoscale is usually positive or negative. It can be used as the basic unit for the assembly of new nanomaterials. In this study, the basic construction of MnO2 nanoscale All kinds of manganese oxide materials composed of manganese dioxide nanoscale are controlled by different synthetic techniques, and manganese oxide materials with different structures have shown good application prospects in energy (two methyl ether catalytic combustion), environmental protection (wastewater treatment) and energy storage equipment. The contents and results are as follows: 1, organic-inorganic hybrid layered manganese oxide materials with large layer spacing are prepared by intercalation assembly method. The two step intercalation method mainly includes the electrostatic assembly of layered manganese oxide nanoscale and CTAB (sixteen alkyl three methyl bromide) by ultrasonic stripping, and the organic molecular intercalation structure is obtained. The alkyl ammonium cation manganese dioxide (CTAB-MO) was introduced into the layer of layered manganese oxide by ion exchange, and the organic-inorganic composite modified manganese oxide material CTAB-Al-MO. was obtained by X ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), transmission electron microscopy (TEM) and Fu Liye infrared spectroscopy (FTIR). The results show that the synthesized products have large layer spacing (1.59 nm) and large specific surface area (161 m2/g), and the thermal stability is high. After roasting at 300 C for 2 h in the air, the synthesized products still maintain a good layered structure. We also found that the amount of CTAB loading determines the content of aluminum in the compound product CTAB-Al-MO. When the composite material is applied to sewage treatment, it is found that when the composite material has a high removal rate of.5min, the decolorization rate of 95%. is of great significance to the further understanding of the structure and application of organic-inorganic composite modified layered manganese dioxide. The results are published in Journal of Solid State Chemi Stry (2013198371-378).2, the porous metal oxide (alumina) layer manganese oxide porous material was prepared by the stripping assembly method and in situ oxidation reduction technology, and applied to the catalytic combustion reaction of the new clean energy two methyl ether. The effect of this study is to use the alumina with good stability as a pillared agent and through chemical method. The layered manganese oxide porous material with high thermal stability (> 500 C) was obtained by intercalation. The layer column manganese oxide porous material remained well layered after 3H calcined at 400 C in air, and the layer spacing was 0.67nm. when the porous material of manganese oxide was applied to the catalytic combustion reaction of two methyl ether. It has higher catalytic activity and stability at a higher low temperature. The ignition temperature T10% is reduced to 140 degrees C, and the complete conversion temperature is T90% 149. At 170, the conversion rate of two methyl ether in 200H is 90%.O2-TPD, XPS and other analysis results show that the layer column manganese oxide catalyst has a rich oxygen species, of which the low temperature and medium temperature active oxygen species are stimulated by two methyl ether. At the same time, the alumina pillared agent can promote the migration of these oxygen species. The transient response technique results show that the surface lattice oxygen (Mn=O) of the manganese oxide catalyst is consumed in the catalytic combustion reaction of two methyl ether and then supplemented by gas phase oxygen regeneration. The result of the study is published in Microporous and Mesoporous Materials (2013181105-110).3, the traditional synthesis technology of manganese dioxide is often redox reaction by two valence manganese ions and permanganate. In this study, manganese dioxide nanoscale was directly used as a reaction material to replace permanganate or manganese salt in traditional method, and the oxidation of special branched structure was synthesized by hydrothermal technology. Manganese material. The preparation of the multi branched beta -MnO2 is mainly through two steps, including the synthesis of a multi branched gamma -MnOOH precursor and the gamma -MnOOH precursor obtained by calcining at 400 C in the air for 24 hours at 160 degrees centigrade with manganese dioxide nanoscale. After calcining, the dendritic beta -MnO2 has a special end structure, that is, it has a depression. The opening and conical closed ends. The assembly and shedding mechanism explains the formation of a special branch structure. In addition, one dimensional rod like and branched products can be generated by controlling the pH value of the reaction system or adding a certain amount of surface active agent SDBS as reactant, from which the y-MnOOH branch structure and the one dimensional bar like structure are realized. The research results were published on Materials Letters (201279288-291).4, in NaOH- glycol reflux system, PVP as surface active agent, H2O2 as oxidant, and simple and fast (1H) to synthesize manganese nanomaterials composed of two dimensional nanometers with thickness about 10nm, and the diameter of the flower ball was 300-500 nm. systematically studied. The effects of synthetic factors, such as the amount of the reactant and the reaction time, have been found, and the mole ratio of OH'/Mn2+ has been found to play a vital role in the formation of an ordered 3D manganese dioxide nanostructure with high crystallinity. The structural characterization shows that the synthesized manganese dioxide nanostructure presents a good mesoporous structure with a pore size of about 20nm. due to the nano structure. The nano size effect and unique open structure of the flower made it have superior adsorption and electrochemical properties. When the adsorption time was 10min, the decolorization rate of Birnessite Mn02 to the red spring red reached 95%, reaching a rapid decolorization effect. The scanning rate was 2mVs-1 and the Birnessite Mn02 specific capacitance of the sample was 191F/g. although Mn02 flower. The synthesis of microspheres has been reported, but it is still of great importance to seek economic, simple and environmentally friendly controllable synthetic paths. According to our knowledge, the preparation of 3D manganese dioxide nanostructures by polyol reflux method is reported for the first time in this study. The research results are published in Industrial and Engneering Chemistry Research (2013,529586-9593) upper.5, a monodisperse manganese dioxide / polyaniline coaxial nanowire (MNW/PANI) was constructed by using manganese dioxide nanoscale assisted hydrothermal method and in situ polymerization to replace the two valent manganese ion and permanganate redox synthesis in the traditional hydrothermal method. The coaxial conformation of polyaniline provides a good electrode material for the assembly of high performance capacitors, which provides a good electrode material.MNW/PANI (14h) with a specific capacitance of 485 mF/cm2 at a scanning rate of 2 mV s-1, far exceeding the specific capacitance (263 mF/cm2) and polyaniline powder (39.75 mF/cm2) of the manganese dioxide nanowires. In addition, the study is made of polyvinyl alcohol / phosphoric acid (PVA/). H3PO4) for solid-state electrolytes, a simple method is used to successfully design and assemble a supercapacitor with manganese dioxide / polyaniline (MNW/PANI) as the electrode. The leakage current of the capacitor assembled in this chapter is very small, the stable value is 20.1 u A. and shows excellent low self discharge characteristics. After 25 hours self discharge, it reaches a steady state. Compared with most flexible capacitors, the output voltage value of 0.42 V. has excellent electrochemical performance, low self discharge characteristics and high stability.
【學位授予單位】:廣東工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TB383.1;O614.711
【相似文獻】
相關期刊論文 前10條
1 莫博;闞彩俠;柯善林;從博;徐麗紅;;銀納米片的研究進展[J];物理化學學報;2012年11期
2 王樹林;一種制備納米片狀鋅粉的新方法[J];礦山機械;2003年10期
3 陸必志,陳振興,黃巧萍,劉輝;納米片狀鋁粉的制備及其發(fā)展動態(tài)[J];涂料技術與文摘;2004年01期
4 呂偉;吳莉莉;徐潤春;吳佑實;蓋紅德;鄒科;;二維納米結構——氧化鉍納米片的制備與表征[J];山東大學學報(工學版);2008年01期
5 段君元;章橋新;王一龍;官建國;;邊長為微米級的銀納米片的簡易合成與形成機理[J];物理化學學報;2009年07期
6 董佳敏;宋玉哲;李旭東;劉國漢;韓根亮;李工農(nóng);;金納米片的低溫水相還原法制備及表征[J];甘肅科學學報;2009年04期
7 張錫鳳;程曉農(nóng);嚴沖;曹智娟;郝偉;劉曉光;;鎳納米片的制備、表征及摩擦學應用[J];江蘇大學學報(自然科學版);2010年04期
8 李彩霞;蔣丹宇;李強;;鉭氧納米片的機械化學法制備及表征[J];稀有金屬材料與工程;2011年S1期
9 關明云;尚通明;賀香紅;孫建華;周全法;顧鵬;;無表面活性劑和攪拌下合成銀納米片(英文)[J];稀有金屬材料與工程;2011年12期
10 黃濤;李燦;吳靜;周忠強;池泉;劉漢范;;四方形鈀納米片的控制合成[J];中南民族大學學報(自然科學版);2013年03期
相關會議論文 前10條
1 楊曉華;楊化桂;李春忠;;{001}晶面主導的銳鈦二氧化鈦納米片的熱穩(wěn)定性研究[A];顆粒學最新進展研討會——暨第十屆全國顆粒制備與處理研討會論文集[C];2011年
2 楊曉晶;;無機納米片的制備和再配列的進展[A];中國化學會第26屆學術年會無機與配位化學分會場論文集[C];2008年
3 劉德宇;葉澤中;林海昕;任斌;田中群;;銅納米片及其復雜合金納米結構的合成及應用[A];中國化學會第28屆學術年會第4分會場摘要集[C];2012年
4 張東陽;丁書江;Xiong Wen(David)Lou;;二硫化鉬納米片復合材料的制備及其鋰離子存儲性能[A];中國化學會第28屆學術年會第5分會場摘要集[C];2012年
5 虞夢娜;杜祝祝;林進義;解令海;黃維;;萘酰亞胺基有機納米片的二維生長和納米復合[A];中國化學會第29屆學術年會摘要集——第33分會:納米材料合成與組裝[C];2014年
6 崔聰穎;成英文;李文靜;邱翠翠;馬厚義;;金納米片的刻蝕過程及其腐蝕機理[A];2010年全國腐蝕電化學及測試方法學術會議摘要集[C];2010年
7 張橋;;銀納米片的膠體合成[A];中國化學會第29屆學術年會摘要集——第26分會:膠體與界面[C];2014年
8 陳圓;丁歡歡;劉天晴;;層狀液晶中金屬納米片的制備[A];中國化學會第29屆學術年會摘要集——第26分會:膠體與界面[C];2014年
9 楊海麗;劉益江;周鵬;王啟光;梁福鑫;楊振忠;;響應性聚合物/無機復合Janus納米片的制備及其性能研究[A];2013年全國高分子學術論文報告會論文摘要集——主題J:高分子復合體系[C];2013年
10 陳小蘭;師賽鴿;黃藝專;陳美;湯少恒;莫世廣;鄭南峰;;不同表面修飾對鈀納米片活體行為的影響[A];中國化學會第29屆學術年會摘要集——第05分會:無機化學[C];2014年
相關重要報紙文章 前2條
1 記者 劉霞;科學家利用超薄沸石納米片造出高效催化劑[N];科技日報;2012年
2 馮衛(wèi)東;新型透明塑料薄如紙硬如鋼[N];科技日報;2007年
相關博士學位論文 前10條
1 張琳;稀土發(fā)光納米片材料的制備及性能研究[D];華東師范大學;2014年
2 李娜;銀納米片的可控合成及其等離子體共振特性研究[D];哈爾濱工業(yè)大學;2013年
3 郝國林;拓撲絕緣體納米結構的可控生長與表面性能[D];湘潭大學;2013年
4 周俊麗;基于二氧化錳納米片構建的功能性納米材料與性能研究[D];廣東工業(yè)大學;2015年
5 李園園;鉍系光催化劑納米—微米結構的制備、修飾及可見光催化性能研究[D];華中師范大學;2009年
6 郭池;不同酸堿度水熱法可控制備硅基納米材料及氫氧化鎳納米片的研究[D];湖南大學;2011年
7 楊曉華;{001}晶面主導的銳鈦型二氧化鈦單晶的制備、穩(wěn)定性和應用研究[D];華東理工大學;2011年
8 黃娟娟;片狀磁性金屬及合金納米顆粒的微波磁性與微波吸收特性研究[D];蘭州大學;2007年
9 王克偉;碘化氧鉍BiOI納米片狀陣列的合成及其應用研究[D];華中師范大學;2012年
10 李峰;高活性面暴露的TiO_2制備及光/電化學性能研究[D];中國科學技術大學;2014年
相關碩士學位論文 前10條
1 李濤;基于氧化鎢納米片多級復合納米結構的制備與光催化性能研究[D];鄭州大學;2012年
2 肖暢;二維硼碳氮納米片層薄膜的控制生長及性質研究[D];哈爾濱工業(yè)大學;2010年
3 肖寒;基于二氧化錳納米片的電化學生物傳感器的研究[D];北京化工大學;2007年
4 劉洋;碳納米片的制備及其性能研究[D];哈爾濱工程大學;2012年
5 李倩;BN烯的制備及其表征[D];哈爾濱工業(yè)大學;2012年
6 溫婷;新型氮雜二維碳納米片的制備及其非線性光學性質的調控[D];蘭州大學;2014年
7 韓文;氧化鐵納米片負載金催化劑制備及催化甲苯氧化性能[D];北京工業(yè)大學;2014年
8 陳龍;新型二維碳納米片的制備及其電化學性能研究[D];天津大學;2014年
9 歐異斌;錳氧化物去除水體中砷的研究[D];湖南農(nóng)業(yè)大學;2013年
10 王寧寧;鈦鈮酸鹽納米片復合材料的組裝與應用研究[D];安徽理工大學;2014年
,本文編號:1945927
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1945927.html