銀納米線柔性透明導(dǎo)電薄膜的制備及性能研究
本文選題:正壓過濾 + DLVO理論 ; 參考:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:隨著柔性電子器件的迅猛發(fā)展,透明導(dǎo)電電極已經(jīng)成為光電器件不可或缺的一部分,如柔性顯示器、柔性太陽能電池及柔性加熱器等。本文主要研究銀納米線基柔性透明導(dǎo)電薄膜的光電性能,其研究內(nèi)容包括銀納米線的制備工藝、銀納米線的純化、穩(wěn)定涂布液的制備以及超低霧度和超高方阻均一性銀納米線柔性透明導(dǎo)電薄膜的制備工藝。取得的主要結(jié)果如下:(1)通過調(diào)節(jié)反應(yīng)液的傳質(zhì)傳熱過程,制備了直徑30~100nm銀納米線,實(shí)現(xiàn)了銀納米線直徑的調(diào)控;通過調(diào)節(jié)反應(yīng)時(shí)間、反應(yīng)溫度及鹵素離子的比例,制備了直徑21 nm、長徑比1500的超細(xì)銀納米線。(2)依據(jù)膠體化學(xué)滲透壓理論及DLVO理論,提出了一種尺寸篩分方法。首次將正壓過濾與丙酮純化工藝相結(jié)合,依次去除銀納米顆粒及納米棒,使得銀納米線長度方差從10.8 μm降至6.3 μm,直徑方差從26.6 nm降至3.2 nm,實(shí)現(xiàn)了銀納米材料的尺寸篩分,獲得高純度超細(xì)銀納米線。(3)依據(jù)膠體表面化學(xué)中雙電層理論及空間位阻效應(yīng),通過調(diào)控涂布液粘度劑和分散劑的百分含量從而對銀納米線表面進(jìn)行化學(xué)修飾,實(shí)現(xiàn)了涂布液至少穩(wěn)定3個(gè)月而不聚沉。另外,依據(jù)RhodesOrchad公式解析銀納米線涂布液的正弦波流模型,通過添加高表面張力的流平劑可提高涂布液的流平性,制備了流變性能優(yōu)異、穩(wěn)定的銀納米線涂布液。(4)依據(jù)納米材料的流體力學(xué),通過調(diào)節(jié)自動(dòng)涂膜機(jī)的車速、涂布的濕膜厚度、涂布液的流平時(shí)間,調(diào)控銀納米線柔性透明導(dǎo)電薄膜方阻及方阻均一性;特別地,當(dāng)車速為180 mm/s時(shí),制備了方阻65.3 Ω/□、方阻不均勻度6.0%及霧度1.3%銀納米線柔性透明導(dǎo)電薄膜。(5)依據(jù)光學(xué)增透原理,通過調(diào)節(jié)光學(xué)改善層的厚度、折射率以及光堆結(jié)構(gòu)等參數(shù),可實(shí)現(xiàn)薄膜霧度的調(diào)控;特別地,在銀納米線上涂布濕膜厚度5 μm的光學(xué)改善層,將銀納米線表面粗糙度6.5 nm降至1.5nm,從而使得薄膜霧度由1.3%降至1.0%、方阻不均勻度降至4.9%,在空氣(折射率約為1.0)與PET(折射率約為1.65)界面涂布折射率為1.49的光學(xué)改善層,將銀納米線透明導(dǎo)電薄膜的霧度降至0.8%。
[Abstract]:With the rapid development of flexible electronic devices, transparent conductive electrodes have become an indispensable part of optoelectronic devices, such as flexible displays, flexible solar cells and flexible heaters. In this paper, the optoelectronic properties of silver nanowires based on flexible transparent conductive thin films are studied, including the preparation of silver nanowires, the purification of silver nanowires, the preparation of silver nanowires and the purification of silver nanowires. Preparation of stable coating solution and preparation of ultra-low fog and ultra-high square resistance uniform silver nanowires flexible transparent conductive films. The main results obtained are as follows: (1) by adjusting the mass transfer and heat transfer process of the reaction solution, the diameter of 30~100nm silver nanowires is prepared, the diameter of the silver nanowires is regulated, and the reaction time, reaction temperature and the ratio of halogen ions are adjusted. Ultrafine silver nanowires with diameter of 21 nm and ratio of length to diameter of 1500 were prepared. According to the theory of colloid chemical osmotic pressure and DLVO theory, a size screening method was proposed. By combining barotropic filtration with acetone purification process for the first time, silver nanoparticles and nanorods were removed in order to reduce the variance of silver nanowires length from 10.8 渭 m to 6.3 渭 m, and diameter variance from 26.6 nm to 3.2 nm. According to the double layer theory and steric effect of colloid surface chemistry, the silver nanowires were chemically modified by adjusting the content of viscosity agent and dispersant in the coating solution. The coating liquid is stable for at least 3 months without coalescence. In addition, according to the RhodesOrchad formula, the sinusoidal wave flow model of silver nanowire coating solution is analyzed. The fluidity of the coating solution can be improved by adding the flattening agent with high surface tension, and the rheological property is excellent. According to the hydrodynamics of nanomaterials, the stable silver nanowire coating fluid. By adjusting the speed of the automatic film coating machine, the thickness of the wet film, the time of the coating liquid, the square resistance and the uniformity of the square resistance of the flexible transparent conductive film of the silver nanowire are regulated. In particular, at a speed of 180 mm/s, a flexible transparent conductive film with 65.3 惟 /-square resistance, 6.0% square resistance and 1.3% foggy resistance was prepared. According to the optical antireflection principle, the thickness of the layer was improved by adjusting the thickness of the film. The index of refraction and the structure of the optical stack can be adjusted to achieve the control of the film haze. In particular, the optical improvement layer with a wet film thickness of 5 渭 m is coated on the silver nanowires. The surface roughness of silver nanowires was reduced from 1.3% to 1.0 nm, the square resistance uniformity was reduced to 4.9 nm, and the optical improvement layer with refractive index of 1.49 was coated at the interface of air (about 1.0) and PET (1.65). The foggy of the transparent conductive film of silver nanowires was reduced to 0.8.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;一種單分散銀納米的制備方法[J];黃金科學(xué)技術(shù);2010年01期
2 周吉峰;銀納米團(tuán)可以儲(chǔ)存更多的光學(xué)數(shù)據(jù)[J];稀有金屬快報(bào);2001年12期
3 鄒凱,張曉宏,吳世康,段曉峰;光化學(xué)法合成銀納米線及其形成機(jī)理的研究[J];化學(xué)學(xué)報(bào);2004年18期
4 ;硅酸鹽基銀納米孔復(fù)合材料順利通過檢測[J];有機(jī)硅氟資訊;2005年08期
5 周學(xué)東;何鑫;趙修建;趙小鋒;;一維銀納米棒的制備及其薄膜化研究[J];材料導(dǎo)報(bào);2006年S2期
6 王悅輝;張琦;周濟(jì);;銀納米立方體的制備及其影響因素[J];材料導(dǎo)報(bào);2008年03期
7 馮晉陽;劉保順;宋明霞;周學(xué)東;趙修建;;玻璃中定向銀納米棒的制備及偏光性能研究[J];武漢理工大學(xué)學(xué)報(bào);2009年04期
8 馬占芳;司國麗;初一鳴;陳穎;;三角銀納米柱的研究進(jìn)展[J];化學(xué)進(jìn)展;2009年09期
9 吳馨洲;裴梅山;王廬巖;李肖男;陶緒堂;;線狀和樹枝狀銀納米結(jié)構(gòu)、形成機(jī)理及表面增強(qiáng)拉曼散射性質(zhì)(英文)[J];物理化學(xué)學(xué)報(bào);2010年11期
10 李山;鐘明亮;張禮杰;熊祖洪;張中月;;偏振方向及結(jié)構(gòu)間耦合作用對空心方形銀納米結(jié)構(gòu)表面等離子體共振的影響[J];物理學(xué)報(bào);2011年08期
相關(guān)會(huì)議論文 前10條
1 邵桂雪;李天保;張華;趙君芙;梁建;許并社;;微波冷凝回流制備銀納米線[A];2011中國材料研討會(huì)論文摘要集[C];2011年
2 李慧s,
本文編號(hào):1940404
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1940404.html