常壓等離子體射流放電及聚合溫敏高分子材料的研究
本文選題:等離子體射流 + 聚合 ; 參考:《東華大學(xué)》2015年碩士論文
【摘要】:大氣壓等離子體放電多是在間隙較小的平行板電極間進(jìn)行,限制了處理材料的幾何形狀尺寸,放電的穩(wěn)定性也容易受到影響。大氣壓等離子體射流(Atmospheric Pressure Plasma Jet)放電區(qū)域與工作區(qū)域相分離,互不影響,可以處理形狀較為復(fù)雜的材料,材料的表面處理均勻性好,同時放電氣體的溫度較低,因此在材料表面改性、薄膜沉積、生物醫(yī)學(xué)等方面得到大規(guī)模的應(yīng)用。 本文設(shè)計了單電極大氣壓沿面介質(zhì)阻擋放電Ar等離子體射流裝置,系統(tǒng)的研究了不同的實驗條件(外加電壓,氣體流速,放電間隙等)對放電特性的影響。通過發(fā)射光譜,分析了等離子體射流中存在的主要基團(tuán)。選用了波長分別為696.12nm、706.34nm、714.93nm的譜線,通過波爾茲曼作圖法,線性擬合求得電子激發(fā)溫度。此外,,通過光纖傳感器測量了管外氣體的溫度。 聚(N-異丙基丙烯酰胺)(PNIPAm)分子內(nèi)同時含有親水的酰胺基和疏水的異丙基,因此具有良好的溫敏特性。PNIPAm在水溶液中有較低的臨界溶解溫度(Lower Critical Solution Temperature,LCST):當(dāng)溶液溫度低于LCST時,聚合物具有良好的溶解性,溶液呈透明狀;當(dāng)溫度升高到LCST以上時,聚合物會從水溶液中相分離,溶液變渾濁。且整個相變過程具有可逆性。這種獨特的溫敏性相轉(zhuǎn)變功能,使其在藥物緩釋、物質(zhì)分離、環(huán)境監(jiān)測、溫敏開關(guān)等方面具有廣泛的應(yīng)用前景。 本文首次對不同濃度的NIPAm單體水溶液的溫敏性進(jìn)行了研究,結(jié)果表明高濃度的NIPAm溶液也具有一定的溫敏性。 本文以不同濃度的N-異丙基丙烯酰胺(NIPAm)單體為反應(yīng)物,在常壓下,通過氣體(Ar)攜帶單體溶液的方法,首次采用等離子體射流在基底表面聚合一系列不同單體濃度的PNIPAm聚合物,使用掃描電子顯微鏡(SEM)、紅外光譜、水接觸角表征了產(chǎn)物的結(jié)構(gòu)與性能。聚合物的傅里葉紅外光譜(FT-IR)顯示存在C=O伸縮振動峰和N-H彎曲振動峰;SEM和接觸角溫敏變化等的分析結(jié)果,表明大氣壓等離子體射流成功聚合得到了PNIPAm。
[Abstract]:The atmospheric pressure plasma discharge is mostly carried out between parallel plate electrodes with small gap, which limits the geometry and size of the treated materials, and the stability of the discharge is easily affected. Atmospheric plasma jet can separate the discharge area of Atmospheric Pressure Plasma Jet) from the working area. It can be used to deal with materials with more complicated shape. The surface treatment uniformity of the materials is good, and the temperature of the discharge gas is low. Therefore, it is widely used in material surface modification, film deposition, biomedicine and so on. An ar plasma jet device for dielectric barrier discharge (DBD) with a single electrode at atmospheric pressure is designed in this paper. The effects of different experimental conditions (applied voltage, gas velocity, discharge gap, etc.) on the discharge characteristics are systematically studied. The main groups in plasma jet were analyzed by emission spectrum. The electron excitation temperature was obtained by linear fitting with a wavelength of 696.12 nm ~ 706.34 nm ~ 714.93 nm. In addition, the temperature of gas outside the tube was measured by optical fiber sensor. Poly (N- isopropyl acrylamide) contains hydrophilic amide group and hydrophobic isopropyl group, so it has good temperature sensitivity. PNIPAm has lower critical solution temperature and lower Critical Solution temperature when the solution temperature is lower than LCST. When the temperature is higher than LCST, the polymer will be separated from the aqueous solution and the solution will become turbid. The whole phase transition process is reversible. This unique function of phase transition of temperature sensitivity makes it have a wide application prospect in drug release, substance separation, environmental monitoring, temperature sensitive switch and so on. The temperature sensitivity of NIPAm monomer aqueous solution with different concentrations was studied for the first time in this paper. The results show that the high concentration of NIPAm solution also has a certain temperature sensitivity. In this paper, a series of PNIPAm polymers with different monomer concentrations were firstly polymerized by plasma jet on the substrate surface using different concentrations of N-isopropyl acrylamide as reactants. The structure and properties of the products were characterized by SEM, IR and water contact angle. Fourier transform infrared spectroscopy (FT-IR) of the polymer shows the existence of Cno stretching vibration peak and N-H bending vibration peak SEM and temperature sensitive change of contact angle. It is shown that PNIPAms have been successfully polymerized by atmospheric pressure plasma jet.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB324
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝艷捧,關(guān)志成,王黎明,王新新,李成榕;大氣壓空氣輝光放電[J];電工電能新技術(shù);2005年02期
2 張芳;劉今強(qiáng);范欽國;;PNIPAAM類材料接枝方法的研究現(xiàn)狀[J];紡織學(xué)報;2007年04期
3 孟顯,潘文霞,吳承康;層流等離子體射流溫度與速度測量[J];工程熱物理學(xué)報;2004年03期
4 王新新;;介質(zhì)阻擋放電及其應(yīng)用[J];高電壓技術(shù);2009年01期
5 王新新;李成榕;;大氣壓氮氣介質(zhì)阻擋均勻放電[J];高電壓技術(shù);2011年06期
6 張冠軍;詹江楊;邵先軍;彭兆裕;;大氣壓氬氣等離子體射流長度的影響因素[J];高電壓技術(shù);2011年06期
7 陶朱,馬培華,劉敏;透明-白濁熱可逆型高聚物及其應(yīng)用前景[J];高分子通報;1995年01期
8 鄧字巍,易昌鳳,徐祖順;聚(N-異丙基丙烯酰胺)類材料的應(yīng)用[J];功能高分子學(xué)報;2004年02期
9 嚴(yán)建華;潘新潮;馬增益;屠昕;岑可法;;直流氬等離子體射流電子溫度的測量[J];光譜學(xué)與光譜分析;2008年01期
10 李雪辰;袁寧;賈鵬英;牛東瑩;;發(fā)射光譜研究大氣壓等離子體射流的氣體溫度[J];光譜學(xué)與光譜分析;2010年11期
相關(guān)博士學(xué)位論文 前1條
1 聶秋月;大氣壓冷等離子體射流實驗研究[D];大連理工大學(xué);2010年
本文編號:1931758
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1931758.html