硫化物復(fù)合材料的可控合成及其超級電容性能研究
本文選題:超級電容器 + NiCo_2S_4@Ni_3S_2; 參考:《華僑大學》2017年碩士論文
【摘要】:作為新一代儲能裝置,超級電容器因為功率密度高、循環(huán)壽命長、充電快速等突出優(yōu)勢,引起了社會密切的關(guān)注。然而,低比容量和較低能量密度卻成為其不容忽視的技術(shù)瓶頸,大大限制了在儲能領(lǐng)域的應(yīng)用。由能量密度公式(E=1/2QV)推出,提升超級電容器能量密度的決定因素是比容量和工作電壓。因此本文選取具有高比容量和良好導電性的硫化物作為研究對象,成功地合成了不同形貌的硫化物及其復(fù)合材料,然后以硫化物及其復(fù)合材料、三維石墨烯凝膠分別作為正極和負極材料,設(shè)計組裝成非對稱超級電容器。通過陰離子交換這一溫和的方法在泡沫鎳上原位合成了獨特的NiCo_2S_4納米管陣列。然后,采用電沉積的方法在NiCo_2S_4骨架上包覆適宜質(zhì)量的Ni_3S_2納米片,得到NiCo_2S_4@Ni_3S_2核殼納米管陣列復(fù)合材料。運用掃描電鏡(SEM)、X射線衍射(XRD)和透射電鏡(TEM)等分析手段對電極材料的形貌和結(jié)構(gòu)進行表征,以及在三電極體系中對NiCo_2S_4和NiCo_2S_4@Ni_3S_2電極進行電化學測試。結(jié)果表明,在4 m A cm-2電流密度下,NiCo_2S_4@Ni_3S_2的面積比容量高達4.25 C cm-2,比純NiCo_2S_4電極(2.62 C cm-2)提升了62.21%。當電流密度達到最大值40m A cm-2,NiCo_2S_4@Ni_3S_2復(fù)合材料的面積比容量依然保持在3.12 C cm-2。NiCo_2S_4@Ni_3S_2復(fù)合材料杰出的電化學性能歸功于以下幾點:1、NiCo_2S_4納米管中空結(jié)構(gòu)和良好導電性的貢獻;2、核殼結(jié)構(gòu)有利于提高電極材料的機械穩(wěn)定性和循環(huán)穩(wěn)定性;3、NiCo_2S_4和Ni_3S_2都是優(yōu)異的法拉第電極材料,發(fā)揮了異質(zhì)協(xié)同作用。以NiCo_2S_4、NiCo_2S_4@Ni_3S_2作為正極材料,同時以三維石墨烯凝膠作為負極材料,構(gòu)造非對稱超級電容器。電化學測試結(jié)果顯示,NiCo_2S_4@Ni_3S_2//r GO凝膠非對稱超級電容器取得了優(yōu)異的電化學性能:在0.5 A g~(-1)電流密度下比容量達到163.15 C g~(-1);當功率密度在0.36 k W kg~(-1)時,能量密度高達32.75 Wh kg~(-1)。此外,循環(huán)壽命測試表明,NiCo_2S_4@Ni_3S_2//r GO凝膠非對稱超級電容器具有卓越的循環(huán)穩(wěn)定性能(在2 A g~(-1)電流密度下,經(jīng)過5000次循環(huán)充放電后容量保持率依然為77.50%)。由此可見,NiCo_2S_4@Ni_3S_2//r GO凝膠非對稱超級電容器在儲能領(lǐng)域具有良好的應(yīng)用前景。采用一步法溶劑熱反應(yīng)合成了形貌可控、粒徑均勻的NiCo_2S_4微球,運用SEM、EDS、XRD對制備材料的形貌和結(jié)構(gòu)進行表征,以及在三電極體系中對NiCo_2S_4電極進行電化學測試。結(jié)果顯示,在1 A g~(-1)電流密度下,NiCo_2S_4電極質(zhì)量比容量高達599.4 C g~(-1)。即使在20 A g~(-1)最大的電流密度下,其質(zhì)量比容量仍然有298 C g~(-1)。NiCo_2S_4微球電極在電化學性能上的優(yōu)勢主要來源于:一方面NiCo_2S_4是具有代表性的法拉第材料,不僅具有豐富可逆的氧化還原反應(yīng),而且導電性良好;另一方面NiCo_2S_4微球表面擁有交聯(lián)的納米片,大大促進電解質(zhì)離子的擴散,同時為電荷轉(zhuǎn)移提供有效路徑。以NiCo_2S_4微球、三維石墨烯凝膠分別作為非對稱超級電容器正負極材料,然后進行組裝。測試結(jié)果顯示,隨著電流密度的不斷增大,NiCo_2S_4//r GO凝膠非對稱超級電容器的質(zhì)量比容量由171.2 C g~(-1)變化到117.6 C g~(-1)。當功率密度為0.39 k W kg~(-1)時,其能量密度高達36.72 Wh kg~(-1)。即使在3.10 k W kg~(-1)高功率密度時,其能量密度依舊可達25.33 Wh kg~(-1)。此外,循環(huán)壽命測試表明,在4 A g~(-1)大電流密度下經(jīng)過5000次循環(huán)充放電后,NiCo_2S_4//r GO凝膠非對稱超級電容器容量保持率仍為77.85%,表現(xiàn)出優(yōu)異的循環(huán)壽命。通過簡單的溶劑熱反應(yīng)一步合成NiCo_2S_4/r GO復(fù)合凝膠,NiCo_2S_4納米粒子均勻地鑲嵌在三維石墨烯片表面。運用XRD、Raman、SEM、TEM等手段對所合成材料的結(jié)構(gòu)和形貌進行表征。通過電化學工作站和LAND電池系統(tǒng)對電極材料進行一系列電化學性能測試。結(jié)果顯示,在1 A g~(-1)電流密度下,NiCo_2S_4/r GO復(fù)合凝膠的超大質(zhì)量比容量為714 C g~(-1)。即使在最大電流密度20 A g~(-1)時,其比容量仍然保持了81.23%(580 C g~(-1)),比純的NiCo_2S_4還要高,體現(xiàn)出良好的倍率性能。另外,在10 A g~(-1)的大電流密度下,經(jīng)過5000次循環(huán)充放電,NiCo_2S_4/r GO復(fù)合凝膠的比容量仍然高達初始值的90.21%,表現(xiàn)出杰出的循環(huán)穩(wěn)定性能。優(yōu)異的電化學性能來源于三維多孔結(jié)構(gòu)的r GO大比表面積及高導電性的貢獻,不僅增多了NiCo_2S_4活性物質(zhì)法拉第反應(yīng)的活性位點,而且提供了快速高效的電荷轉(zhuǎn)移和離子擴散速率。
[Abstract]:As a new generation of energy storage devices, supercapacitors have attracted much attention because of their high power density, long cycle life, fast charging and other outstanding advantages. However, low specific capacity and low energy density have become the technical bottlenecks that can not be ignored, which greatly restrict the application in the field of energy storage. The energy density formula (E=1/2QV) is introduced. The determination of the energy density of the supercapacitor is the specific capacity and the working voltage. Therefore, in this paper, the sulfides and their composites with different morphologies have been successfully synthesized with high specific capacity and good conductivity, and then the sulfides and their composite materials are used as positive poles of the three dimensional graphene gels. And the negative electrode was designed and assembled into an asymmetric supercapacitor. A unique NiCo_2S_4 nanotube array was synthesized in situ on the nickel foam by a mild method of anion exchange. Then, the suitable mass Ni_3S_2 nanoscale was coated on the NiCo_2S_4 framework by electrodeposition, and the NiCo_2S_4@Ni_3S_2 core shell nanotube array complex was obtained. The morphology and structure of the electrode materials were characterized by scanning electron microscopy (SEM), X ray diffraction (XRD) and transmission electron microscopy (TEM), and the electrochemical measurements of NiCo_2S_4 and NiCo_2S_4@Ni_3S_2 electrodes were carried out in the three electrode system. The results showed that the area specific capacity of NiCo_2S_4@Ni_3S_2 was at the cm-2 current density of 4 m A. Up to 4.25 C cm-2, higher than pure NiCo_2S_4 electrode (2.62 C cm-2) increased 62.21%. when the current density reached maximum 40m A cm-2, the area specific capacity of NiCo_2S_4@Ni_3S_2 composite remains in 3.12 C cm-2.NiCo_2S_4@Ni_3S_2 composites outstanding electrochemical performance attributed to the following points: 1, hollow nanotube hollow structure and good 2, the nuclear shell structure is beneficial to improve the mechanical stability and the cyclic stability of the electrode material; 3, NiCo_2S_4 and Ni_3S_2 are excellent Faraday electrode materials, and play the heterogeneous synergism. NiCo_2S_4, NiCo_2S_4@Ni_3S_2 is used as the positive material, and the three dimensional graphene gel is used as the negative material, and the asymmetric super structure is constructed. The electrochemical test results show that the NiCo_2S_4@Ni_3S_2//r GO gel asymmetric supercapacitor has excellent electrochemical performance: the specific capacity reaches 163.15 C g~ (-1) at 0.5 A g~ (-1) current density, and when the power density is 0.36 K W kg~ (-1), the energy density is up to 32.75. The 2S_4@Ni_3S_2//r GO gel unsymmetrical supercapacitor has excellent cyclic stability (at 2 A g~ (-1) current density, after 5000 cycles charge discharge capacity remains 77.50%). Thus, the NiCo_2S_4@Ni_3S_2//r GO gel asymmetric supercapacitor has a good application prospect in the field of energy storage. One step method is adopted. NiCo_2S_4 microspheres with controllable morphology and uniform particle size were synthesized by solvothermal reaction. The morphology and structure of the prepared materials were characterized by SEM, EDS and XRD, and the electrochemical measurement of NiCo_2S_4 electrodes in the three electrode system showed that the mass ratio of the NiCo_2S_4 electrode was up to 599.4 C g~ (-1) under the 1 A g~ (-1) current density. Under the maximum current density of 20 A g~ (-1), its mass ratio capacity still has 298 C g~ (-1).NiCo_2S_4 microsphere electrode in electrochemical performance mainly from: on the one hand NiCo_2S_4 is a representative Faraday material, not only has a rich reversible redox reaction, but also has good electrical conductivity; on the other hand, NiCo_2S_4 microsphere table With NiCo_2S_4 microspheres, three dimensional graphene gel is used as an asymmetric supercapacitor positive and negative electrode, and then assembled. The test results show that the NiCo_2S_4//r GO gel is asymmetric with the increasing of the current density. The mass ratio of the supercapacitor varies from 171.2 C g~ (-1) to 117.6 C g~ (-1). When the power density is 0.39 K W kg~ (-1), the energy density is up to 36.72 Wh kg~. The energy density is still up to 25.33, even at the high power density of 3.10. After 5000 cycles of charging and discharging, the capacity retention of NiCo_2S_4//r GO gel unsymmetrical supercapacitor is still 77.85%, showing excellent cycle life. NiCo_2S_4/r GO composite gel is synthesized by a simple solvent thermal reaction. NiCo_2S_4 nanoparticles are evenly embedded in the surface of three-dimensional graphene sheet. XRD, Raman, SEM, TEM and so on are used. The structure and morphology of the synthesized materials were characterized. A series of electrochemical properties were tested by electrochemical workstation and LAND battery system. The results showed that the super mass specific capacity of NiCo_2S_4/r GO composite gel was 714 C g~ (-1) at 1 A g~ (-1) current density, even at the maximum current density of 20 A g~ (-1). Its specific capacity remains 81.23% (580 C g~ (-1)), which is higher than pure NiCo_2S_4 and shows good multiplier performance. In addition, the specific capacity of NiCo_2S_4/r GO composite gel is still up to 90.21% of the initial value at the large current density of 10 A g~ (-1), and the specific capacity of NiCo_2S_4/r GO composite gel is still high. Excellent electricity is shown. The chemical properties are derived from the large specific surface area and high conductivity of R GO in the three-dimensional porous structure, which not only increase the active site of the Faraday reaction of the NiCo_2S_4 active substance, but also provide a fast and efficient charge transfer and ion diffusion rate.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB332;TM53
【相似文獻】
相關(guān)期刊論文 前10條
1 陳新麗;李偉善;;超級電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
2 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級電容器研究進展[J];材料導報;2011年15期
3 梓文;;超高能超級電容器[J];兵器材料科學與工程;2013年04期
4 ;歐盟創(chuàng)新型大功率超級電容器問世[J];功能材料信息;2014年01期
5 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級電容器”[J];環(huán)境與生活;2012年01期
6 江奇,瞿美臻,張伯蘭,于作龍;電化學超級電容器電極材料的研究進展[J];無機材料學報;2002年04期
7 朱修鋒,王君,景曉燕,張密林;超級電容器電極材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級電容器氧化物電極材料的研究進展[J];礦冶工程;2003年02期
9 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強;超級電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
10 賀福;碳(炭)材料與超級電容器[J];高科技纖維與應(yīng)用;2005年03期
相關(guān)會議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學與物理電源學術(shù)年會論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應(yīng)用[A];中國化學會第15屆反應(yīng)性高分子學術(shù)討論會論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學學術(shù)會議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學術(shù)研討會論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風;陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學術(shù)論文報告會論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設(shè)計、制備及性質(zhì)研究[A];中國化學會第27屆學術(shù)年會第10分會場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級電容器——多孔碳電極材料的影響[A];中國化學會第27屆學術(shù)年會第10分會場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學術(shù)會議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:1920423
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1920423.html