天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 材料論文 >

基于苯并二噻吩及苯并三噻吩的光伏材料合成和性能研究

發(fā)布時間:2018-05-15 10:39

  本文選題:聚合物太陽能電池 + 苯并二噻吩衍生物 ; 參考:《湘潭大學》2017年博士論文


【摘要】:本論文簡單的介紹了本體異質結(BHJ)型聚合物太陽能電池(PSCs)的光電轉換工作原理及性能影響因素。著重綜述了BHJ PSCs光敏活性層中的以苯并[1,2-b:4,5-b′]二噻吩(BDT)為代表單元的聚合物電子給體材料以及以傒二酰亞胺(PDI)為代表的小分子電子受體材料的研究進展及設計策略。在BHJ PSCs器件結構中,光敏活性層中材料的吸收光子能力、分子能級、溶解性、聚集態(tài)、光活性層形貌和載流子遷移率等都會對器件的光電轉換效率(PCE)產(chǎn)生重要影響。為此,本論文從調控光敏活性層中材料的吸收光譜、HOMO/LUMO能級、溶解性、共混微相分離結構和載流子遷移率等方面出發(fā),設計并合成了一系列基于BDT為推電子結構單元的新型聚合物給體材料以及以PDI為拉電子結構單元的受體小分子,并利用飛行時間質譜、核磁共振氫譜(碳譜)、元素分析以及高分辨質譜等檢測手段對所合成的目標分子及聚合物進行了表征。同時,采用熱重分析(TGA)、差示掃描量熱法(DSC)、紫外-可見吸收光譜(UV-Vis)、循環(huán)伏安法(CV)、廣角X射線衍射(WAXRD)、原子力顯微鏡(AFM)等分析方法表征了所合成的共軛聚合物給體材料及小分子受體材料的熱性能、結晶性、光物理性質、電化學性能以及共混薄膜表面形貌。同時研究了以目標共軛聚合物為電子給體材料或以目標受體小分子為受體材料的BHJ PSCs器件的光電能量轉換性能。本論文的主要研究內容如下:1.設計并合成了兩種基于苯并[1,2-b:4,5-b′]二噻吩(BDT)為推電子結構單元(D),苯并[c][1,2,5]噻二唑為弱拉電子結構單元(A1),吡咯并[3,4-c]吡咯二酮(DPP)或異靛(ID)為強拉電子結構單元(A2)的有規(guī)三元共軛聚合物(D-A1-D-A2)PTer-DPP和PTer-ID。并詳細地研究了A2拉電子結構單元的種類對有規(guī)三元共軛聚合物的光物理性質、電化學性能以及光電能量轉換的影響規(guī)律。研究結果表明:PTer-ID在短波區(qū)域(300-550 nm)的吸收強于PTer-DPP;聚合物PTer-ID具有比PTer-DPP更小的π-π堆積距離,PTer-ID共混膜具有比PTer-DPP共混膜更高的空穴遷移率,故其PSC器件表現(xiàn)出更高的Jsc(10.01 mA cm-2);同時,PTer-ID的HOMO能級更低,故其PSC器件表現(xiàn)出更高的Voc(0.89V);因此,在未另外加入任何添加劑及優(yōu)化處理條件下,基于聚合物PTer-ID的BHJ PSCs光伏器件PCE值為3.27%。而相同條件下基于PTer-DPP的器件PCE值僅為2.28%。2.以噻吩并[3,2-b]噻吩單元取代噻吩單元,設計并合成了兩種噻吩并[3,2-b]噻吩單元分別在主鏈和側鏈,且拉電子結構單元在共軛側鏈的D-A型共軛聚合物PTT-DTBT和PT-DTTBT。并且詳細地研究了噻吩并[3,2-b]噻吩單元在聚合物主鏈或共軛側鏈的位置差異對聚合物的熱性能、光物理性質、電化學性能以及器件光電轉換性能的影響。研究結果表明,相比于噻吩并[3,2-b]噻吩單元在主鏈的聚合物PTT-DTBT,噻吩并[3,2-b]噻吩單元位于共軛側鏈的聚合物PT-DTTBT具有更寬更紅移的吸收光譜、更小的光學帶隙、更高的空穴遷移率以及更好的薄膜共混性。在未加入任何添加劑及后處理條件下,基于聚合物PTT-DTBT/PC61BM和PT-DTTBT/PC61BM的BHJ PSCs器件效率分別為3.05%(Voc=0.82 V,Jsc=8.10 mA cm-2,FF=46%)和4.07%(Voc=0.79 V,Jsc=9.99 mA cm-2,FF=51%)。3.設計并合成了以4-硫烷基苯(SB)作為二維(2D)共軛側鏈取代的BDT衍生物為推電子結構單元,并將其分別與4,7-二溴-5,6-二氟苯并[c][1,2,5]噻二唑(DFBT),4,7-(雙(5-溴-4-己基)-2-噻吩基)5,6-二氟苯并[c][1,2,5]噻二唑(DTDFBT)和2-乙基己基-4,6-二溴-3-氟噻吩并[3,4-b]噻吩-2-甲酸酯(FTT)進行Stille偶聯(lián)聚合,得到三種D-A型共軛聚合物PSB-DFBT,PSB-DTDFBT和PSB-FTT。并詳細地研究了基于三種不同拉電子結構單元所形成的聚合物,在光物理性質、電化學性能、聚合物固體薄膜分子堆積以及光電轉化效率等方面的性能差異。研究結果表明,三種聚合物熱失重5%的溫度都在340℃以上,均具備制備光伏器件的熱穩(wěn)定性條件。FTT單元作為拉電子結構單元所得到的聚合物PSB-FTT具有最大的吸收光子能力、最強的分子間π-π堆積、最有效的激子分離和最高的空穴傳輸性能,從而導致基于聚合物PSB-FTT的器件具有最佳的PCE值;诰酆衔颬SB-DFBT/PC71BM、PSB-DTDFBT/PC71BM和PSB-FTT/PC71BM的BHJ PSCs器件效率分別為1.88%(Voc=0.76 V,Jsc=6.39 mA cm-2,FF=39%),0.48%(Voc=0.58 V,Jsc=2.97 mA cm-2,FF=28%)和4.55%(Voc=0.82V,Jsc=9.50 mA cm-2,FF=57%)。4.設計并合成了以2-(4-硫烷基)苯基噻吩(SBT)為2D共軛側鏈取代的BDT衍生物為推電子結構單元,并將其分別與兩種經(jīng)典的拉電子結構單元DFBT和FTT進行Stille偶聯(lián)聚合,分別得到聚合物PSBT-DFBT和PSBT-FTT。同時,為了對比研究4-硫烷基苯(SB)與2-(4-硫烷基)苯基噻吩(SBT)兩種2D共軛側鏈取代BDT對所形成的聚合物光物理性質、電化學性能以及光伏性能的影響,重新合成了聚合物PSB-FTT。詳細地研究了側鏈結構對三種聚合物的光物理性質、電化學性能、結晶性、聚集態(tài)結構以及光電能量轉換的影響關系。研究結果表明,由于側鏈SBT適當延長了分子共軛長度,且與BDT單元直接相連的噻吩基團相比苯環(huán)基團具有更小的扭轉位阻,聚合物PSBT-FTT相比于PSB-FTT具有更寬、更強的吸收光譜,更強的分子間相互作用力,更小的分子間π-π堆積距離,更高的空穴遷移率;赑SBT-FTT/PC71BM的BHJ PSCs的器件PCE值達到了7.06%(Voc=0.80 V,Jsc=12.60 mA cm-2,FF=70%),相比基于PSB-FTT/PC71BM的BHJ PSCs器件PCE值(4.83%)提高了將近50%。同時,基于PSBT-DFBT/PC71BM的BHJ PSCs器件PCE值為3.96%,這是基于PSB-DFBT/PC71BM的BHJ PSCs器件PCE值(1.88%)的兩倍。這些研究結果表明,SBT側鏈比SB側鏈更適合于聚合物光伏材料。5.設計并合成了一個基于苯并[1,2-b:3,4-b':5,6-b']三噻吩(BTT)為中心核,3個PDI為臂的“三葉型”有機電子受體材料(BTT-3PDI),采用TGA、DSC、UV-Vis、CV、WAXRD、AFM等表征手段對BTT-3PDI的熱性能、光物理性質、電化學性能、分子固體薄膜聚集態(tài)形貌等進行了全面分析。研究結果表明,BTT-3PDI具有一定的結晶性,其電子遷移率達到了3.69×10-3 cm2 V-1 s-1。BTT-3PDI與經(jīng)典的給體材料PTB7-Th具有良好的光譜互補和能級匹配。然而,由于BTT-3PDI與PTB7-Th共混薄膜的微相分離尺寸過小(表面粗糙度RMS小于1 nm),單一相純度較低,導致共混薄膜激子復合嚴重,電荷傳輸性能較差,其共混薄膜的電子遷移率和空穴遷移率分別降至1.67×10-5 cm2 V-1 s-1和2.80×10-5cm2 V-1 s-1,這導致其BHJ PSCs器件的光伏性能較差,PCE值僅為1.35%(Voc=0.78V,Jsc=6.16 mA cm-2,FF=28%)。該研究結果表明,當PDI臂與核具有小角度的結晶性小分子受體材料在光活性共混膜中也能避免嚴重聚集并出現(xiàn)相分離。
[Abstract]:This paper briefly introduces the principle of the photoelectric conversion of the bulk heterojunction (BHJ) type polymer solar cell (PSCs) and the influence factors of its performance. This paper focuses on the summary of the polymer electron donor material in the BHJ PSCs photosensitive layer, which is represented by the [1,2-b:4,5-b 'two thiophene (BDT) as the representative unit and the PDI (PDI) as the representative. Research progress and design strategy for small molecular electron acceptor materials. In the structure of BHJ PSCs devices, the absorption photon ability of materials in the photosensitive active layer, molecular energy level, solubility, aggregation state, photoactive layer morphology and carrier mobility are all important effects on the photoelectric conversion efficiency (PCE) of the devices. Therefore, this paper regulates the photosensitivity The absorption spectra of the materials in the active layer, the HOMO/LUMO energy level, the solubility, the structure of the blend microphase separation and the carrier mobility are designed and synthesized. A series of new polymer donor materials based on the BDT as the electronic structure unit and the small molecule of the PDI as the tensile electron structure unit are designed and synthesized, and the time of flight time mass spectrometry is used. Magnetic resonance hydrogen spectrum (carbon spectroscopy), elemental analysis and high resolution mass spectrometry have been used to characterize the synthesized target molecules and polymers. At the same time, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultraviolet visible absorption spectroscopy (UV-Vis), cyclic voltammetry (CV), wide-angle X ray diffraction (WAXRD), atomic force microscopy (AFM) and so on Methods the thermal properties, crystallinity, photophysical properties, electrochemical properties and surface morphology of the conjugated polymer donor materials and small molecule receptor materials were characterized. The photoelectric energy of the BHJ PSCs device with the target conjugated polymer as the electron donor material or the target receptor subdivision as the receptor material was also studied. The main research contents of this paper are as follows: 1. two kinds of regular three elements are designed and synthesized, which are based on D (BDT), D, benzo [c][1,2,5] thiothiazole as weak electronic structure unit (A1), pyrrole and [3,4-c] pyrrole two ketone (DPP) or isoindigo (ID) as a strong tensile electronic structure unit (A2). Yoke polymers (D-A1-D-A2) PTer-DPP and PTer-ID. have been studied in detail. The effects of the type of A2 on the photophysical properties, electrochemical properties and photoelectric energy conversion of a regular three element conjugated polymer have been studied. The results show that the absorption of PTer-ID in the short wave region (300-550 nm) is stronger than that of PTer-DPP, and the polymer PTer-ID has a good effect. The PTer-ID blend film has a higher hole mobility than the PTer-DPP blend film, so the PSC device shows a higher Jsc (10.01 mA cm-2), and the HOMO level of PTer-ID is lower, so the PSC device shows a higher Voc (0.89V); therefore, no additional additives and optimal treatment conditions are added. The BHJ PSCs photovoltaic device based on the polymer PTer-ID is 3.27%. and the PTer-DPP based device PCE value is only 2.28%.2. with thiophene and [3,2-b] thiophene unit instead of thiophene unit. Two thiophene and [3,2-b] thiophene units are designed and synthesized in the main chain and side chain respectively, and the electronic structure unit is in the D-A type of the conjugate side chain. Conjugated polymers PTT-DTBT and PT-DTTBT. and the effects of thiophene and [3,2-b] Thiophene Units on the thermal, photophysical, electrochemical properties and photoelectric conversion properties of the polymer in the polymer main chain or the conjugate side chain are investigated. The results show that the thiophene and [3,2-b] thiophene units are in the main chain. Polymer PTT-DTBT, thiophene and [3,2-b] thiophene unit located in the conjugate side chain have a wider and more red shift absorption spectrum, smaller optical band gap, higher hole mobility and better film blends. Under the conditions of no additive and post treatment, B based on polymer PTT-DTBT/PC61BM and PT-DTTBT/PC61BM The efficiency of HJ PSCs devices is 3.05% (Voc=0.82 V, Jsc=8.10 mA cm-2, FF=46%) and 4.07% (Voc=0.79 V, Jsc=9.99 mA), designed and synthesized. 4,7- (double (5- bromine -4- hexyl) -2- thiophene) 5,6- two fluoro benzothiothiophene (DTDFBT) and 2- ethyl hexyl -4,6- dibromine -3- fluorothiophene and [3,4-b] thiophene -2- formate are coupled and polymerized, and three kinds of conjugated polymers are obtained and studied in detail based on three different electronic structure sheets. The properties of the polymer formed by the element are in the light physical properties, the electrochemical performance, the accumulation of polymer solid film molecules and the photoelectric conversion efficiency. The results show that the temperature of the three kinds of polymers is above 340 degrees centigrade, and the thermal stability of the photovoltaic devices is prepared by the.FTT unit as the tensile electronic structure. The polymer PSB-FTT obtained by the element has the maximum absorption photon ability, the strongest intermolecular pion pion accumulation, the most effective exciton separation and the highest hole transmission performance, resulting in the best PCE value of the devices based on the polymer PSB-FTT. Based on the BHJ PSCs devices of polymer PSB-DFBT/PC71BM, PSB-DTDFBT/PC71BM and PSB-FTT/PC71BM The efficiency is 1.88% (Voc=0.76 V, Jsc=6.39 mA cm-2, FF=39%), and 0.48% (Voc=0.58 V, Jsc=2.97 mA cm-2, FF=28%) and 4.55% are designed and synthesized. Stille coupling polymerization of substructural units DFBT and FTT was used to obtain polymer PSBT-DFBT and PSBT-FTT. respectively. In order to compare the effects of 4- thiophenyl benzene (SB) and 2- (4- sulfur alkyl) phenyl thiophene (SBT) two 2D conjugated side chains instead of BDT pairs on the photophysical properties, electrochemical properties and photovoltaic properties of the polymers, the effects of SB and 2- (4- sulfur alkyl) phenyl thiophene (SBT) were resynthesized. Polymer PSB-FTT. has studied the effects of side chain structure on the photophysical properties, electrochemical properties, crystallinity, aggregation structure and photoelectric energy conversion of three kinds of polymers. The results show that the side chain SBT extends the molecular conjugation length appropriately, and the thiophene group directly connected to the BDT monomer is compared to the benzene ring group. Smaller torsional resistance, polymer PSBT-FTT has a wider spectrum, stronger absorption spectrum, stronger intermolecular interaction, smaller intermolecular pion accumulation distance and higher hole mobility. The PCE value of BHJ PSCs based on PSBT-FTT/PC71BM has reached 7.06% (Voc=0.80 V, Jsc=12.60 mA cm-2, FF=70%), compared to those based on The PCE value (4.83%) of the BHJ PSCs device (4.83%) increased by nearly 50%. while the PSBT-DFBT/PC71BM based BHJ PSCs device PCE value was 3.96%, which was based on PSB-DFBT/PC71BM BHJ PSCs device two times (1.88%). Benzo [1,2-b:3,4-b': 5,6-b'] three thiophene (BTT) is a central nucleus and 3 PDI "three leaf" organic electron acceptor material (BTT-3PDI). Using TGA, DSC, UV-Vis, CV, WAXRD, AFM and so on, the thermal properties, photophysical properties, electrochemical properties, and the aggregation morphology of molecular solid film are comprehensively analyzed. It is clear that BTT-3PDI has a certain crystalline property, and its electron mobility reaches 3.69 * 10-3 cm2 V-1 s-1.BTT-3PDI and has good spectral complementarity and energy level matching with the classical donor PTB7-Th. However, because the microphase separation size of the BTT-3PDI and PTB7-Th blend films is too small (the surface roughness RMS is less than 1 nm), the purity of the single phase is low, and the purity of the single phase is low. The composite film has a serious complex of excitons and poor charge transfer performance. The electron mobility and hole mobility of the blend films are reduced to 1.67 x 10-5 cm2 V-1 S-1 and 2.80 x 10-5cm2 V-1 s-1, which leads to the poor photovoltaic performance of the BHJ PSCs devices, and the PCE value is only 1.35% (Voc=0.78V, Jsc=6.16 mA). Small crystalline acceptor materials with small angles can also avoid serious aggregation and phase separation in photo active blend films.

【學位授予單位】:湘潭大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TB34;TM914.4

【相似文獻】

相關期刊論文 前10條

1 徐秋舒;陳仕艷;王華平;;新型共軛聚合物太陽能材料的合成與表征[J];中國科技論文;2013年02期

2 劉承美,宋建濤,胡富貞;感光性可溶共軛聚合物聚對苯的合成[J];華中科技大學學報(自然科學版);2004年05期

3 許怡赦,陳國鼎,周金運;電化學處理對Π共軛聚合物陽極特性的改善[J];廣東工業(yè)大學學報;2004年03期

4 張寶明;徐晶晶;董愛娟;;熒光共軛聚合物的熒光機理研究[J];科技視界;2012年28期

5 海杰峰;尹良敏;唐衛(wèi)華;;基于噻唑并噻唑結構的共軛聚合物太陽能電池材料的合成與表征[J];中國科技論文;2014年02期

6 牛俊峰;楊志祥;黃光榮;曾翎;;聚苯撐乙炔共軛聚合物的合成及光電性能[J];浙江科技學院學報;2006年02期

7 李峰;;2012年光伏材料市場年均增速高達43.6%[J];功能材料信息;2010年Z1期

8 ;全球光伏材料市場分析[J];中國科技財富;2011年03期

9 ;美國科學家研制出體光伏材料[J];功能材料信息;2014年01期

10 潘月琴;王瀟漾;潘U,

本文編號:1892114


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1892114.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶4b3d5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com