一維鈮酸鉀納米材料的合成及其儲(chǔ)鋰性能
本文選題:納米材料 + 鋰離子電池; 參考:《寧波大學(xué)》2017年碩士論文
【摘要】:本論文首次以靜電紡絲法合成了KNb_3O_8、K_(5.75)Nb_(10.85)O_(30)和K_2Nb_6O_(16)的一維鈮酸鉀納米材料,并首次探索了這三種物質(zhì)的儲(chǔ)鋰性能。本文分為五章。第1章,簡(jiǎn)要指出了本文的研究背景與選題意義,并重點(diǎn)介紹了納米材料特別是一維納米材料的特性、應(yīng)用和主要制備方法。最后概述了論文的選題意義。第2章,以草酸鈮,草酸和乙酸鉀為主要原料,采用了靜電紡絲法結(jié)合煅燒工藝合成了團(tuán)聚嚴(yán)重的KNb_3O_8納米棒。該KNb_3O_8為不是很穩(wěn)定的類四邊形結(jié)構(gòu),含有兩種鈮離子。KNb_3O_8用作電極材料時(shí)有一定儲(chǔ)鋰性能,但是其性能較差。在循環(huán)性能測(cè)試中,KNb_3O_8納米棒首周的充電比容量為156.5 mAh g-1,第50周的充電比容量為65.6 mAh g-1。前50周的充電比容量保持率僅為41.9%。第3章,以草酸鈮,草酸和乙酸鉀為主要原料,采用了靜電紡絲法結(jié)合煅燒工藝合成了分散的K_(5.75)Nb_(10.85)O_(30)納米棒。該K_(5.75)Nb_(10.85)O_(30)為不太穩(wěn)定的類四邊形結(jié)構(gòu),只有一種鈮離子。用作鋰離子電池電極材料時(shí),K_(5.75)Nb_(10.85)O_(30)納米棒有良好的的倍率性能和循環(huán)性能。在倍率性能測(cè)試中,樣品在第1周、第11周、第21周、第31周、第41周的充電比容量分別是153.2、107.4、81.7、64.7、113.7 mAh g-1。在循環(huán)性能測(cè)試中,K_(5.75)Nb_(10.85)O_(30)的前15周的充電比容量衰減較快,之后趨于穩(wěn)定。K_(5.75)Nb_(10.85)O_(30)納米材料從第15周到第90周的充電比容量的單周平均衰減率僅為0.2%。第4章,以草酸鈮,草酸和乙酸鉀為主要原料,采用了靜電紡絲法結(jié)合煅燒工藝合成了分散的K_2Nb_6O_(16)棒。該K_2Nb_6O_(16)的結(jié)構(gòu)主要是比較穩(wěn)定的五邊形結(jié)構(gòu),且只有一種鈮離子。研究結(jié)果表明,K_2Nb_6O_(16)納米材料具有優(yōu)異的倍率性能和循環(huán)性能。在倍率性能測(cè)試中,K_(5.75)Nb_(10.85)O_(30)在第1周、第11周、第21周、第31周、第41周的充電比容量分別是94.3、80.5、61.1、43.6、88.7 mAh g-1。在循環(huán)性能測(cè)試中,第1周的充電比容量為94.8 mAh g-1,第90周的充電比容量為65.7 mAh g-1。第1周到第90周的充電比容量的單周平均衰減率僅為0.8%。第5章,簡(jiǎn)單總結(jié)了本論文的工作并展望了課題可能的發(fā)展。
[Abstract]:In this paper, the one-dimensional potassium niobate nanomaterials of KNb3OS _ 8K _ S _ (5.75) and K _ 2Nb _ (6) O _ (16) have been synthesized by electrospinning for the first time, and the lithium storage properties of these three substances have been explored for the first time. This paper is divided into five chapters. In chapter 1, the research background and significance of this paper are briefly pointed out, and the characteristics, applications and main preparation methods of nanomaterials, especially one-dimensional nanomaterials, are emphatically introduced. Finally, the significance of the thesis is summarized. In chapter 2, KNb_3O_8 nanorods with severe agglomeration were synthesized by using niobium oxalate, oxalic acid and potassium acetate as main raw materials. The KNb_3O_8 is an unstable quadrilateral structure and contains two kinds of niobium ions. KNbSZ _ 3O _ (8) has some lithium storage properties when it is used as electrode material, but its performance is poor. In the cycle performance test, the charge specific capacity of the KNbS _ 3O _ 8 nanorods was 156.5 mAh g ~ (-1) in the first week and 65.6 mAh g ~ (-1) in the 50 ~ (th) week. The charge specific capacity retention rate for the first 50 weeks was only 41.9. In chapter 3, using niobium oxalate, oxalic acid and potassium acetate as the main raw materials, the dispersed K _ S _ (5.75) NbS _ (10.85) O _ (30) nanorods were synthesized by electrospinning method and calcination process. The Kill 5.75 NbSch 10.85 O\ + _ (30) is an unstable quadrilateral structure with only one niobium ion. When used as electrode material for lithium-ion battery, the nanorods have good rate performance and cycling performance. In the rate performance test, the charge specific capacity of the sample at week 1, week 11, week 21, week 31 and week 41 is 153.2107.4 渭 m, 64.7113.7 mAh g-1, respectively. In the cycle performance test, the charge specific capacity of Kstack 5.75 / NbSerp 10.85 / O / C) decreased rapidly in the first 15 weeks and then tended to be stable. The average attenuation rate of charge specific capacity of the nanomaterials from the 15th to the 90th week was only 0.2k.Then, the average attenuation rate of the charge specific capacity of the nanomaterials from the 15th week to the 90th week was only 0.22%. In chapter 4, using niobium oxalate, oxalic acid and potassium acetate as main raw materials, the dispersed K _ 2NbS _ 6O _ (16) rod was synthesized by electrospinning method and calcination process. The structure of the K2Nb6O _ (16) is mainly a relatively stable pentagonal structure, and there is only one niobium ion. The results show that the nanocomposites have excellent rate performance and cycle performance. In the rate performance test, the specific charge capacity of mAh in the first week, the 11th week, the 21st week, the 31st week, and the 41st week were 94.3 / 80.5 / 61.1 / 43.6/ mAh / g ~ (-1), respectively, and the specific charge capacity was 10.85 mAh / g ~ (30) in the first week, the 11th week, the 21st week, the 31 th week, the 41 th week, respectively. In the cycle performance test, the charging specific capacity was 94.8 mAh g-1 in the first week and 65.7 mAh g-1 in the 90th week. The average weekly attenuation rate of the charge specific capacity from week 1 to week 90 is only 0.8. In chapter 5, the work of this thesis is summarized and the possible development of this thesis is prospected.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ340.64;TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張耀軍;萬剛強(qiáng);顏磊;馬慶昌;李東祥;趙繼寬;;種子生長(zhǎng)法制備ZnO納米棒組裝結(jié)構(gòu)[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2016年01期
2 蔡河山;孫明;宋巍;李佩霞;謝艷萍;李慧珊;;鈮酸鉀水熱合成及其光催化性能的研究[J];無機(jī)鹽工業(yè);2013年11期
3 于斌;曹博;曹慧群;張欣鵬;張晟頡;林萍;張安祥;羅仲寬;張濤;;棒狀KNb_3O_8晶體的熔鹽法制備及熒光性的研究[J];陶瓷學(xué)報(bào);2012年01期
4 張金超;劉丹丹;周國(guó)強(qiáng);申世剛;;納米材料在組織工程中的應(yīng)用[J];化學(xué)進(jìn)展;2010年11期
5 朱世東;徐自強(qiáng);白真權(quán);尹成先;苗健;;納米材料國(guó)內(nèi)外研究進(jìn)展Ⅱ——納米材料的應(yīng)用與制備方法[J];熱處理技術(shù)與裝備;2010年04期
6 王超;侯育冬;葛海燕;朱滿康;嚴(yán)輝;;鈮酸鉀納米棒的新型溶膠-凝膠法合成[J];稀有金屬材料與工程;2010年S2期
7 呂劍明;范冠鋒;曹建新;劉佳;范冠英;;Ta摻雜對(duì)Na_(0.5)Bi_(0.5)TiO_3-0.02NaNbO_3壓電、介電性能的影響[J];材料導(dǎo)報(bào);2010年S1期
8 王斌;王榕妹;王俊卿;鄧安平;;分子印跡材料研究進(jìn)展[J];化學(xué)研究與應(yīng)用;2010年02期
9 代淑芬;;納米材料的特性和發(fā)展[J];無錫南洋學(xué)院學(xué)報(bào);2008年04期
10 王定勝;彭卿;李亞棟;;單分散納米晶的合成、組裝及其介孔材料的制備[J];中國(guó)科學(xué)(G輯:物理學(xué) 力學(xué) 天文學(xué));2008年11期
相關(guān)博士學(xué)位論文 前2條
1 肖全蘭;用于光譜調(diào)制堿金屬鈮酸鹽微納材料的設(shè)計(jì)與合成[D];華南理工大學(xué);2015年
2 楊敏;鈮酸鹽:高溫高壓合成與熒光性質(zhì)的研究[D];吉林大學(xué);2013年
相關(guān)碩士學(xué)位論文 前2條
1 王威;鈮酸鉀鈉納米纖維的制備及其機(jī)電轉(zhuǎn)換特性研究[D];湖北大學(xué);2013年
2 袁曉曼;層狀鈮酸鹽的凝膠—燃燒工藝制備研究[D];大連交通大學(xué);2012年
,本文編號(hào):1889533
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1889533.html