纏繞成型碳纖維混雜增強復合材料薄壁筒的碰撞吸能特征
本文選題:輕量化 + 纏繞成型。 參考:《東華大學》2017年碩士論文
【摘要】:自從機動車類交通工具產(chǎn)生及發(fā)展以來,使用者對汽車安全問題一直甚為關心,同時汽車安全問題一直困擾著相關的行業(yè)。國家統(tǒng)計局的數(shù)據(jù)顯示,近十年來民用汽車的擁有量保持大幅度的增長趨勢。由于我國交通道路情況的不斷改善、交通監(jiān)管及交通知識普及的力度增大,交通事故的發(fā)生數(shù)呈現(xiàn)下降趨勢,但始終維持在20萬起以上。針對汽車的被動安全性,汽車工業(yè)做出了很多努力,目前整車結(jié)構(gòu)對于交通事故中人員的損傷具有一定的防護能力。但專家學者不止于此,為汽車工業(yè)的進一步發(fā)展不斷思考及創(chuàng)新。近年來,空氣污染成為困擾我國居民的嚴重危害,環(huán)境問題日益突出,基數(shù)巨大的馬路空氣污染制造者——機動車造成的環(huán)境問題也日益引發(fā)全球的關注。如何在不降低汽車使用性能的前提下,減少發(fā)動裝置排放的有害氣體含量成為引領汽車領域的一個全新的課題。隨之而提出的汽車輕量化概念為汽車行業(yè)提供了現(xiàn)實的解決方案。新材料行業(yè)的不斷發(fā)展為汽車輕量化提供了強有力的支持!耙运艽摗奔从盟芰洗驿摬牡氖褂,因為纖維增強復合材料具有高強、高模及質(zhì)輕等特點,正在逐漸取代合金和木材,用于航天、汽車、建筑、健身器材等領域。纖維增強復合材料的成型工藝很大程度上決定了其性能及其產(chǎn)品的使用條件,本實驗選取的成型的工藝為纏繞成型。其具有制造成本低,制品質(zhì)量高度可重復等優(yōu)點。所用增強材料為無捻粗紗材料,無須紡織,減少了工序,降低了成本。用于汽車的能量吸收管件的能量吸收性能的主要測試方法有準靜態(tài)壓縮試驗和動態(tài)沖擊試驗,壓縮破壞過程中,復合材料通過分層、開裂和纖維的斷裂吸收能量。為了獲得高能量吸收性能的材料,往往期望管件以漸進穩(wěn)定的破壞形式破壞。本實驗選取碳纖維、芳綸纖維、玻璃纖維及環(huán)氧樹脂為原料,在纏繞成型中統(tǒng)一制作成三層結(jié)構(gòu)的管件。中間層纖維取向接近90°,起到軸向力的主要承擔作用。最外層和最內(nèi)層纖維取向接近于0°,主要起到束縛控制中間層裂紋產(chǎn)生及擴展的作用。基于前人的研究,設計了五種結(jié)構(gòu)的幾何形狀為圓形復合材料管件。由于能量吸收部件安裝部位靠近發(fā)動機,本實驗對各試樣進行了溫度處理(100℃下處理200h)。約50mm高的試樣一端保持水平,另一端打磨出45°的倒角,水平端放置于壓縮試驗臺上進行壓縮試驗。壓縮試驗包括準靜態(tài)壓縮試驗及動態(tài)沖擊試驗。破壞后的試樣通過樹脂包埋固定形態(tài),切割打磨后觀察且截面形態(tài),輔助分析其破壞機制。實驗結(jié)果表明,相同試樣在準靜態(tài)壓縮中表現(xiàn)出較高的能量吸收值,該實驗管件屬于速度敏感型,表現(xiàn)為在準靜態(tài)壓縮與動態(tài)沖擊狀態(tài)下表現(xiàn)出不同的能量吸收特征。未經(jīng)溫度處理試樣實驗結(jié)果顯示碳纖維增強管件的能量吸收性能優(yōu)于玻璃纖維增強管件及碳/芳綸纖維增強管件。而碳/芳綸增強管件在經(jīng)過溫度處理后,能量吸收性能得到提升。在五種類型的纖維增強復合材料管件中,經(jīng)過溫度處理的A/C1.6’復合材料管件(芳綸纖維/碳纖維/芳綸纖維:0.15mm(88°)/1.66mm(10°)/0.83mm(88°))表現(xiàn)出最為優(yōu)異的能量吸收性能(Es值最高):在準靜態(tài)壓縮試驗中為98 kJ/kg,在落塔沖擊試驗中為82 kJ/kg。根據(jù)微觀截面圖片,分析得到碳/芳綸纖維增強管件在經(jīng)過溫度處理后中央裂紋較未經(jīng)溫度處理的試樣短,葉片的曲率也較大。所有的試樣表現(xiàn)為開花破壞模式。
[Abstract]:Since the emergence and development of vehicle vehicles, users have been very concerned about the problem of automobile safety. At the same time, the problem of automobile safety has been plaguing the related industries. The data of the National Bureau of statistics show that the ownership of civilian cars has maintained a large increase in the last ten years. The traffic supervision and the popularization of traffic knowledge have increased, the number of traffic accidents is declining, but it has been maintained over 200 thousand. In view of the passive safety of the automobile, the automobile industry has made a lot of efforts. At present, the vehicle structure has certain protection ability for the damage of personnel in traffic accidents. In recent years, air pollution has become a serious harm to the residents of our country, and environmental problems are becoming more and more serious. The environmental problems caused by the large number of road air pollution makers - motor vehicles have also become more and more concerned about the world. Reducing the harmful gas content emitted by the engine has become a new topic in the automotive industry. The concept of automotive lightweight provides a realistic solution for the automotive industry. The continuous development of the new material industry provides a strong support for the automotive lightweight. The use of steel, because the fiber reinforced composites have the characteristics of high strength, high modulus and light quality, is gradually replacing alloy and wood, used in space, automobile, building, fitness equipment and other fields. The molding technology of fiber reinforced composites determines its performance and the use conditions of its products to a great extent. It has the advantages of low manufacturing cost and high repeatability of the quality of the products. The reinforced material used as the roving material, without the need of textile, reduces the process and reduces the cost. The main testing methods used for energy absorption performance of energy absorption pipes for automobile include quasi static compression test and dynamic impact test, compression failure. During the process, the composite material absorbs energy by delamination, cracking and fracture of fiber. In order to obtain high energy absorption properties, the tube is often expected to be destroyed in a progressive and stable form. In this experiment, carbon fiber, aramid fiber, glass fiber and epoxy resin were selected as raw materials, and three layers of pipe fittings were made in winding molding. The fiber orientation of the middle layer is close to 90 degrees, which plays the main role of the axial force. The orientation of the outer and the most inner fiber is close to 0 degrees. It mainly plays the role of the crack generation and expansion of the middle layer. Based on the previous study, the geometry of the five structures is designed as circular composite pipe. The position is close to the engine, the sample is treated with temperature (200H at 100 degrees C). The one end of about 50mm high is kept level, the other end is grinding out the chamfering of 45 degrees. The horizontal end is placed on the compression test bench for compression test. The compression test includes the quasi static compression test and the dynamic impact test. The specimen after the failure is passed through the resin. The experimental results show that the same specimen has a high energy absorption value in quasi static compression, and the experimental tube is of a velocity sensitive type, which shows different energy absorption characteristics under quasi static compression and dynamic impact state. The results of the temperature treated sample show that the energy absorption performance of the carbon fiber reinforced pipe is better than that of the glass fiber reinforced tube and the carbon / aramid fiber reinforced tube. The carbon / aramid reinforced pipe is improved by the temperature treatment. In the five types of fiber reinforced composite pipes, the temperature treated A/ The C1.6 'composite pipe (aramid fiber / carbon fiber / aramid fiber: 0.15mm (88) /1.66mm (10)) /0.83mm (88 degrees)) showed the most excellent energy absorption performance (Es value): 98 kJ/kg in the quasi-static compression test and 82 kJ/ kg. in the drop tower impact test for the carbon / aramid fiber reinforced pipe. After temperature treatment, the central crack is shorter than that without temperature treatment, and the curvature of the blade is larger. All the specimens show the pattern of flowering failure.
【學位授予單位】:東華大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB332
【相似文獻】
相關期刊論文 前10條
1 婁紅莉;郭興峰;;帶織物層疊纏繞玻璃鋼管的設計與纏繞成型[J];產(chǎn)業(yè)用紡織品;2013年02期
2 徐國平,彭葵,王根和;中堿纏繞紗在玻璃鋼纏繞成型中的應用[J];玻璃鋼/復合材料;1992年05期
3 桂美里;玻璃鋼高強電絕緣管的研制[J];玻璃鋼/復合材料;1991年04期
4 徐濤清;熱塑性樹脂基復合材料的發(fā)展及纖維纏繞成型工藝[J];宇航材料工藝;1993年04期
5 何曉東;史耀耀;趙鵬兵;;復合材料布帶纏繞成型壓力控制技術(shù)[J];航空學報;2014年03期
6 張福承;簡論從纖維纏繞到帶纏繞成型工藝[J];纖維復合材料;1998年02期
7 張曉明;;非晶金屬帶纏繞成型及其性能的研究[J];纖維復合材料;1988年03期
8 劉一博,陳可娟,趙志強,張誠生;工程機械輪胎胎面仿型纏繞成型機設計[J];橡膠工業(yè);2004年08期
9 賈麗霞;陳輝;;纖維纏繞成型聚酰亞胺基復合材料性能研究[J];纖維復合材料;2010年03期
10 黎昱;陳維強;林大慶;張玉生;;纏繞成型復合材料殼體及基體改性研究[J];宇航材料工藝;2009年05期
相關會議論文 前4條
1 劉炳禹;王曉潔;韓建平;;流線型殼體纏繞成型技術(shù)研究[A];復合材料的現(xiàn)狀與發(fā)展——第十一屆全國復合材料學術(shù)會議論文集[C];2000年
2 李鵬;楊秀迪;田會方;徐東亮;高樂敏;吳耀楚;;纏繞成型工藝的高效化和自動化[A];第十三屆玻璃鋼/復合材料學術(shù)年會論文集[C];1999年
3 吳海峰;潘鼎;;環(huán)氧基復合材料纖維纏繞成型固化的熱化學模型[A];全國首屆青年復合材料學術(shù)交流會論文集[C];2007年
4 吳海峰;潘鼎;;環(huán)氧基復合材料纖維纏繞成型固化的熱化學模型[A];中國復合材料學術(shù)研討會論文集[C];2005年
相關博士學位論文 前1條
1 王顯峰;異型件面片纏繞成型軌跡規(guī)劃的研究[D];哈爾濱工業(yè)大學;2008年
相關碩士學位論文 前9條
1 周天一;復合材料槳葉增強帶纏繞成型技術(shù)與裝備研究[D];大連理工大學;2015年
2 王少梅;仿形帶織物層疊纏繞成型矩形管復合材料的研究[D];天津工業(yè)大學;2016年
3 劉長志;纖維纏繞成型中樹脂流動/纖維密實行為研究[D];大連理工大學;2016年
4 許晶;纏繞成型碳纖維混雜增強復合材料薄壁筒的碰撞吸能特征[D];東華大學;2017年
5 張勇;非回轉(zhuǎn)體構(gòu)件纏繞成型運動軌跡研究[D];哈爾濱工業(yè)大學;2006年
6 李旭武;連續(xù)玻璃纖維增強聚丙烯復合材料的兩步法纏繞成型[D];華東理工大學;2011年
7 高維佳;連續(xù)纖維增強PEK-C復合材料的纏繞成型工藝及性能研究[D];沈陽航空航天大學;2011年
8 曹建;仿竹結(jié)構(gòu)的新型復合材料管的制備和研究[D];東華大學;2008年
9 李明捷;基于ARM微控制器的FRP纏繞成型工藝數(shù)據(jù)采集系統(tǒng)的研究[D];武漢理工大學;2006年
,本文編號:1882814
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1882814.html