基于蠶砂制備氮磷硫自摻雜納米碳材料及其電化學性能研究
發(fā)布時間:2018-05-11 19:28
本文選題:超級電容器 + 鋰硫電池 ; 參考:《南昌大學》2017年碩士論文
【摘要】:近些年來,由于環(huán)境污染和能源短缺問題加劇,“新能源”一詞已然成為熱點詞匯。各國研究者們逐漸將越來越多的精力投入到新能源技術研究和新能源材料開發(fā)當中。新能源主要可分為兩個方面,即新能源獲取和新能源存儲。新能源存儲又可大致分為電池和電容器兩大塊。隨著可穿戴電子設備、新能源汽車等領域的快速發(fā)展對儲能設備高能量密度、大功率密度以及安全穩(wěn)定等特性提出了更高的要求,超級電容器和鋰硫電池漸漸成為研究熱點,尤其是可用作超級電容器和鋰硫電池電極材料的多孔碳納米材料。本文選用生物質天然蠶砂用作碳源,通過不同的方法制備出具有豐富多孔結構和高比表面積的生物質基多孔碳納米材料,并研究了其電化學特性。主要內(nèi)容如下:(1)通過180℃反應12小時水熱碳化,隨后經(jīng)過氫氧化鉀活化后成功制備了多孔碳納米材料。利用XRD、XPS、EELS表征其成分和物相;利用SEM和TEM對其形貌結構進行分析;利用氮氣吸附-脫附曲線對其比表面積和孔徑分布進行了表征。結果表明,水熱法制備出的碳材料為納米網(wǎng)絡結構,自摻雜有少量的氮、磷、硫等元素。除此之外,所制備的材料具有大量微孔,以及一定量的介孔和大孔,比表面積高達2258.45 m2·g~(-1)。將其用作雙電層超級電容器電極后,表現(xiàn)出良好的超電容特性。在1 mA·cm~(-2)低電流密度條件下,其面積比電容高達974.44 mF·cm~(-2),即使在100 mA·cm~(-2)超高電流密度條件下其面積比電容依然高達444.44 mF·cm~(-2);在0.333 A·g~(-1)低電流密度條件下,其質量比電容高達324.81 F·g~(-1),在33.333 A·g~(-1)超高電流密度條件下其質量比電容也達到了148.15F·g~(-1),表現(xiàn)出了良好的倍率性能。(2)通過在惰性氣體保護條件下900℃高溫碳化3小時,隨后經(jīng)過氫氧化鉀活化后成功制備了多孔碳納米片材料。利用XRD、XPS、EELS對其成分和物相;利用SEM和TEM對其形貌結構進行分析;利用氮氣吸附-脫附曲線對其比表面積和孔徑分布進行了表征。結果表明,高溫碳化法制備出的碳材料為納米片結構,這與水熱法制備的目標產(chǎn)物的形貌結構具有很大差別。高溫碳化法制備的碳材料同樣自摻雜有少量的氮、磷、硫等元素。氮氣吸附-脫附等溫曲線表明制備的碳材料同樣具有大量微孔,以及一定量的介孔和大孔。將其用作雙電層電容器電極材料后,在1 mA·cm~(-2)低電流密度條件下,其面積比電容高達716.67 mF·cm~(-2),即使在100 mA·cm~(-2)超高電流密度條件下其面積比電容依然高達444.44 mF·cm~(-2)。在0.333 A·g~(-1)低電流密度條件下,其質量比電容高達238.89F·g~(-1),在33.333 A·g~(-1)超高電流密度條件下其質量比電容也達到了148.15 F·g~(-1),表現(xiàn)出了優(yōu)異的倍率性能。另外,將其與單質硫復合后用作鋰硫電池的正極,表現(xiàn)出620.1 mA·h·g~(-1)(60%硫)和656.6 mA·h·g~(-1)(70%硫)的首次放電比容量,遠高于單質硫作正極的首次放電比容量125.1 mA·h·g~(-1)。在0.2 C條件下,經(jīng)過100次循環(huán)后,碳硫復合材料的容量保持率依然高達88%(60%硫)和92%(70%硫),表現(xiàn)出了良好的循環(huán)穩(wěn)定性能。
[Abstract]:In recent years, because of the aggravation of environmental pollution and energy shortage, the term "new energy" has become a hot vocabulary. Researchers in various countries are gradually putting more and more energy into the research of new energy technology and the development of new energy materials. New energy can be divided into two aspects, namely, new energy acquisition and new energy storage. With the fast development of wearable electronic equipment and new energy vehicles, the high energy density, high power density and safety and stability of the energy storage equipment are raised with the fast development of the wearable electronic equipment. The supercapacitors and lithium sulfur batteries have gradually become the hot spots, especially for super electricity, which can be used as super electricity. Porous carbon nanomaterials of container and lithium sulfur battery electrode materials. In this paper, biomass natural silkworm sand used as carbon source was used to prepare porous carbon nanomaterials with rich porous structure and high specific surface area by different methods, and their electrochemical properties were studied. The main contents are as follows: (1) 12 hour hydrothermal reaction through 180 C The porous carbon nanomaterials were prepared after the activation of potassium hydroxide. The composition and phase of the porous carbon were characterized by XRD, XPS and EELS. The morphology and structure were analyzed by SEM and TEM, and the specific surface area and pore size distribution were characterized by nitrogen adsorption desorption curve. The results showed that the carbon materials prepared by hydrothermal method were nanoscale. The network structure has a small amount of nitrogen, phosphorus, sulfur and other elements. In addition, the prepared materials have a large number of micropores, as well as a certain amount of mesoporous and large pores, with a specific surface area up to 2258.45 m2. G~ (-1). After being used as the electrode of a double layer supercapacitor, it shows a good supercapacitor property. Under the low current density of 1 mA. Cm~ (-2), The area is up to 974.44 mF. Cm~ (-2). Even under the ultra high current density of 100 mA. Cm~ (-2), its area is still up to 444.44 mF. Cm~ (-2). Under the low current density of 0.333 A. G~ (-1), the mass ratio of the capacitance is 324.81. The mass is also higher than the capacitance under the condition of the 33.333 ultra high current density. 148.15F. G~ (-1) showed good multiplier performance. (2) the porous carbon nanoscale materials were prepared by carbonization at 900 C for 3 hours under the inert gas protection and then activated by potassium hydroxide. XRD, XPS, EELS were used to analyze their composition and phase, and the morphology and structure were analyzed with SEM and TEM, and nitrogen adsorption was used - The surface area and pore size distribution are characterized by the desorption curve. The results show that the carbon materials prepared by high temperature carbonization are nanoscale structure, which is very different from the morphology and structure of the target products prepared by hydrothermal method. The carbon materials prepared by high temperature carbonization also have a small amount of nitrogen, phosphorus, sulfur and other elements. The isothermal curve shows that the prepared carbon material also has a large number of micropores and a certain amount of mesoporous and large pores. After being used as the electrode material of the double layer capacitor, the area is up to 716.67 mF. Cm~ (-2) under the condition of low current density of 1 mA. Cm~ (-2). Even at the ultra high current density of 100 mA. Cm~ (-2), the area is higher than the capacitance. It is up to 444.44 mF. Cm~ (-2). Under the condition of low current density of 0.333 A. G~ (-1), its mass is as high as 238.89F. G~ (-1). Under the condition of 33.333 A. G~ (-1), the mass ratio of the capacitance is 148.15. The excellent doubling performance is shown. In addition, it is combined with the elemental sulfur as the positive pole of the lithium sulfur battery. The first discharge specific capacity of 620.1 mA. H. G~ (-1) (60% sulfur) and 656.6 mA. H. G~ (-1) (70% sulfur) was shown to be far higher than the first discharge ratio of the elemental sulfur as the positive electrode of 125.1 mA H. G~ (-1). After 100 cycles, the capacity retention rate of the carbon sulfur composite was still up to 88% (60% sulphur) and 92% (70% sulfur), showing good performance. Cycle stability performance.
【學位授予單位】:南昌大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ127.11;TB383.1
【參考文獻】
相關期刊論文 前6條
1 李力;劉婭;陸宇超;梁中耀;張鵬;孫紅文;;生物炭的環(huán)境效應及其應用的研究進展[J];環(huán)境化學;2011年08期
2 李玉佩;李景印;段立謙;;高性能超級電容器電極材料的研究進展[J];河北工業(yè)科技;2010年01期
3 董緒燕;魏芳;劉亮;胡小加;江木蘭;楊湄;鈕琰星;郭璐璐;趙元弟;黃鳳洪;陳洪;李光明;;農(nóng)作物生物煉制的發(fā)展現(xiàn)狀與展望[J];中國農(nóng)學通報;2008年07期
4 楊靜;劉亞菲;陳曉妹;胡中華;趙國華;;高能量密度和功率密度炭電極材料[J];物理化學學報;2008年01期
5 王大偉;李峰;劉敏;成會明;;硝酸氧化改性SBA-15模板合成的中孔炭電容性能研究(英文)[J];新型炭材料;2007年04期
6 張治安,鄧梅根,胡永達,楊邦朝;電化學電容器的特點及應用[J];電子元件與材料;2003年11期
相關碩士學位論文 前1條
1 喬娜;玉米芯和松子殼的水熱碳化及其產(chǎn)物吸附性能研究[D];大連理工大學;2015年
,本文編號:1875284
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1875284.html
最近更新
教材專著