葡糖基聚合物修飾的金納米粒子的設(shè)計(jì)、制備及蛋白識(shí)別
本文選題:金納米粒子 + 含葡糖基聚合物 ; 參考:《東華大學(xué)》2017年碩士論文
【摘要】:近年來,納米級(jí)的金顆粒具有熒光性、超分子與分子識(shí)別等特殊的物理化學(xué)性能使其在搭載核酸及糖類大分子中被用來進(jìn)行免疫、標(biāo)定、示蹤領(lǐng)域備受關(guān)注。多功能共聚物膠束因其具有優(yōu)異的生物相容性以及形貌結(jié)構(gòu)易于控制、響應(yīng)條件易于調(diào)節(jié)等特點(diǎn)被作為一種新型的高分子材料,將此類多功能共聚物膠束搭載到金納米粒子上,已逐漸為生物醫(yī)藥領(lǐng)域的研究熱點(diǎn)。本實(shí)驗(yàn)課題在大量先前研究的基礎(chǔ)上,通過“一鍋法”將制備的金納米粒子(AuNPs)與通過可逆加成-斷裂鏈轉(zhuǎn)移(Reversible addition-fragmentation chain transfer,RAFT)聚合方法合成的一系列基于溫敏單體DEGMA的聚合物進(jìn)行接枝,經(jīng)過多種表征方法確認(rèn)其分子的化學(xué)結(jié)構(gòu),利用分子間相互作用力產(chǎn)生的自組裝行為獲得了溫度敏感性含葡萄糖基聚合物@AuNPs膠束,系統(tǒng)研究了其在溫度響應(yīng)性、生物相容性、對(duì)蛋白質(zhì)的特異性識(shí)別功能及其在促進(jìn)肝癌細(xì)胞死亡的研究。論文第一章介紹了AuNPs的研究現(xiàn)狀以及基于PDEGMA溫敏性含糖聚合物@AuNPs膠束的合成方法及其生物應(yīng)用研究,并概述了本課題的研究背景。第二章,主要內(nèi)容是利用RAFT聚合技術(shù)和“一鍋法”設(shè)計(jì)合成一系列基于不同結(jié)構(gòu)的溫敏性含糖物及其@AuNPs,并使用多種表征手段進(jìn)行分子化學(xué)結(jié)構(gòu)的確定。為了得到同時(shí)具有生物活性和溫敏性的聚合物@AuNPs,我們先利用“酶促法”制備的含糖單體6-O-乙烯基壬二酸-D-葡萄糖酯(OVNGlu)和溫度敏感性單體二聚乙二醇單甲醚甲基丙烯酸酯(DEGMA)分別通過RAFT聚合生成不同結(jié)構(gòu)的溫敏含糖聚合物P(DEGMA-co-OVNGlu)、PDEGMA-b-POVNGlu。再通過“一鍋法”將溫敏含糖基聚合物與氯金酸在還原劑、保護(hù)劑的作用下合成P(DEGMA-co-OVNGlu)@AuNPs、PDEGMA-b-POVNGlu@AuNPs。利用核磁共振氫譜(~1H NMR)、傅里葉紅外光譜(FT-IR)、紫外可見光光譜(UV-Vis)和凝膠滲透色譜(GPC)對(duì)聚合物的分子化學(xué)結(jié)構(gòu)進(jìn)行了表征。結(jié)果表明,溫敏性含葡萄糖聚合物的化學(xué)組成與實(shí)驗(yàn)設(shè)計(jì)之初的用料比例相一致;制備溫敏性含糖聚合物中PDEGMA的分子量與單體轉(zhuǎn)化率呈線性關(guān)系,這使得溫敏性含糖聚合物的分子量可以通過RAFT聚合技術(shù)有效調(diào)控;利用RAFT聚合技術(shù)與“一鍋法”技術(shù)可以制備出結(jié)構(gòu)規(guī)整的溫敏含糖聚合物@AuNPs。第三章,我們將溫敏性含糖聚合物@AuNPs溶解于水中,對(duì)不同結(jié)構(gòu)溫敏性含糖聚合物及其@AuNPs溶液的溫敏性和膠束自組裝機(jī)理進(jìn)行研究。使用紫外可見光分光光度計(jì)測(cè)定聚合物、聚合物@AuNPs的低臨界溶解溫(LCST),聚合物P(DEGMA-co-OVNGlu)的LCST值為34℃,PDEGMA-b-OVNGlu的LCST值在35℃,P(DEGMA-co-OVNGlu)@AuNPs的LCST值是36℃;PDEGMA-b-OVNGlu@AuNPs的LCST值為37℃。結(jié)果表明,在相同單體比例的條件下,接枝金納米粒子聚合物的LCST值比未接枝金納米粒子聚合物的LCST值高。通過動(dòng)態(tài)、靜態(tài)激光散射實(shí)驗(yàn)分別測(cè)定了不同溫度下聚合物膠束及聚合物@AuNPs膠束在水溶液狀態(tài)下的流體力學(xué)半徑(Dh)值和均方根旋轉(zhuǎn)半徑(Rg)值。發(fā)現(xiàn)其數(shù)值,開始隨溫度變化保持不變,中間階段開始變大,最后達(dá)到一個(gè)穩(wěn)定數(shù)值。最終通過透射電子顯微鏡(TEM)觀察制備的聚合物膠束以及聚合物@AuNPs膠束的形貌,觀察所得聚合物具有規(guī)整的球形結(jié)構(gòu)且分散均勻。實(shí)驗(yàn)表明:制備的溫敏性含葡糖基聚合物能在水溶液中自組裝形成近球形的納米粒子,將AuNPs與溫敏性含葡糖基聚合物接枝后同樣可以在水溶液中自組裝成球形納米粒子,其LCST值可以通過聚合物的分子結(jié)構(gòu)加以調(diào)整。本研究將溫敏性含葡糖基聚合物與AuNPs接枝,豐富了含糖聚合物在生物應(yīng)用領(lǐng)域的研究,同時(shí)拓展了金納米粒子的表面修飾分子的種類。第四章,當(dāng)通過化學(xué)技術(shù)合成新的物質(zhì)在面向生物學(xué)應(yīng)用時(shí),其生物相容性是一個(gè)不可避免的重要問題。我們分別研究不同結(jié)構(gòu)的聚合物@AuNPs后與凝集素的識(shí)別能力、外界溫度變化對(duì)其識(shí)別凝集素的影響;通過生物相容性實(shí)驗(yàn)驗(yàn)證所聚合物對(duì)正常細(xì)胞的毒性影響;不同結(jié)構(gòu)的溫敏性含葡糖基聚合物與凝集素識(shí)別后對(duì)肝癌細(xì)胞生長的影響。結(jié)果表明,結(jié)構(gòu)規(guī)整的溫敏性含葡萄糖嵌段聚合物@AuNPs與凝集素的識(shí)別效果最佳,同時(shí)比未接枝AuNPs的聚合物識(shí)別效果好;隨著環(huán)境溫度的變化,分子表面暴露的糖基位點(diǎn)越多,膠束與凝集素的識(shí)別效率也將有所提高;所合成的聚合物材料對(duì)正常細(xì)胞均具有良好的生物相容性;聚合物@AuNPs膠束在與凝集素識(shí)別后對(duì)肝癌細(xì)胞細(xì)胞的正常生長具有抑制作用。第五章,對(duì)課題中的主要內(nèi)容進(jìn)行總結(jié)。通過本課題的研究,對(duì)未來深入研究進(jìn)行展望。
[Abstract]:In recent years, nanoscale gold particles have the characteristics of fluorescence, supramolecular and molecular recognition and other special physical and chemical properties, which have been used for immunization, calibration and tracing in nucleic acid and saccharide macromolecules. Multifunction copolymer micelles have excellent biocompatibility and easy control of morphology and structure. As a new type of polymer material, it is a new type of polymer material. This kind of multifunctional copolymer micelle is attached to gold nanoparticles. It has gradually become a hot research field in the field of biological medicine. On the basis of a large number of previous studies, the gold nanoparticles (AuNPs) prepared by one pot method can be reversibly added by the "one pot method". A series of polymers based on thermosensitive monomer DEGMA synthesized by Reversible addition-fragmentation chain transfer (RAFT) polymerization were grafted. The chemical structure of the molecules was confirmed by a variety of characterization methods. The temperature sensitive glucose based polymer was obtained by the self-assembly behavior of intermolecular interaction force. @AuNPs micelles are studied systematically in temperature response, biocompatibility, specific recognition of protein and the research on promoting the death of hepatoma cells. Chapter 1 introduces the research status of AuNPs and the synthesis methods based on PDEGMA thermosensitive polymer @AuNPs micelles and their biological applications. The second chapter is the second chapter. The main content is to use the RAFT polymerization technology and one pot method to synthesize a series of temperature sensitive sugars and their @AuNPs based on different structures, and use a variety of characterization methods to determine the molecular chemical structure. In order to obtain the simultaneous bioactivity and temperature sensitivity of the polymer @AuNPs, I The glycosylated 6-O- vinyl nonandiacid -D- glucose ester (OVNGlu) and the temperature sensitive monomer two polyethylene glycol monomethyl ether methacrylate (DEGMA) were prepared by the enzyme method, and the temperature sensitive sugar containing polymer P (DEGMA-co-OVNGlu) of different structures was formed by RAFT polymerization, respectively, and PDEGMA-b-POVNGlu. was then carried out by "one pot method" by the "one pot" method of Wen Min. P (DEGMA-co-OVNGlu) @AuNPs was synthesized with glycosyl polymer and chlorochloric acid under the action of reductant and protectant. PDEGMA-b-POVNGlu@AuNPs. using nuclear magnetic resonance spectroscopy (~1H NMR), Fourier infrared spectroscopy (FT-IR), UV visible light spectroscopy (UV-Vis) and gel permeation chromatography (GPC) were used to characterize the molecular structure of the polymer. The results showed that the molecular structure of the polymer was characterized by the UV spectroscopy (FT-IR), UV visible light spectroscopy (UV-Vis) and gel permeation chromatography (GPC). The chemical composition of the thermosensitive glucose containing polymer is in accordance with the proportion of the material at the beginning of the experimental design; the molecular weight of PDEGMA in the preparation of thermosensitive sugar containing polymers has a linear relationship with the monomer conversion rate, which makes the molecular weight of the thermosensitive polymer containing sugar can be effectively regulated by the RAFT polymerization technology; and the RAFT polymerization technology and "one pot method" are used. The thermo sensitive sugar polymer @AuNPs. third chapter is prepared by the technique. We dissolve the thermosensitive polymer @AuNPs in water and study the temperature sensitivity and the micellar self-assembly mechanism of different structure temperature sensitive polymers and their @AuNPs solutions. The UV spectrophotometer is used to determine the polymer and polymer. The low critical dissolution temperature (LCST) of @AuNPs, the LCST value of the polymer P (DEGMA-co-OVNGlu) is 34, the LCST value of PDEGMA-b-OVNGlu is 35, P (DEGMA-co-OVNGlu) @AuNPs LCST is 36, and the PDEGMA-b-OVNGlu@AuNPs is 37 C. The result shows that the graft gold nanoparticles polymer is more than the graft gold under the same monomer ratio. The LCST value of the nanoparticle polymer is high. By dynamic and static laser scattering experiments, the hydrodynamic radius (Dh) value and the root mean square rotation radius (Rg) value of polymer micelles and polymer @AuNPs micelles at different temperatures are measured respectively. Finally, a stable value was reached. The morphology of the polymer micelles and polymer @AuNPs micelles prepared by the transmission electron microscope (TEM) was observed. The polymers with a regular spherical structure and uniform dispersion were observed. The results showed that the prepared thermosensitive glucosylated polymers could self assemble in aqueous solution to form nearly spherical. Nanoparticles, after grafting AuNPs with thermosensitive glucoside polymers, can also be self assembled into spherical nanoparticles in aqueous solution, and their LCST values can be adjusted by the molecular structure of the polymer. This study has grafted the thermosensitive glucoside polymer with AuNPs, enriching the study of the sugar containing polymers in the field of biological applications. The type of surface modifier of gold nanoparticles is extended. In the fourth chapter, when a new substance is synthesized by chemical technology in biological application, its biocompatibility is an unavoidable problem. We study the recognition ability of the polymer @AuNPs and the agglutinin of different structures, and the external temperature change to identify the coagulant. The effects of the biocompatibility test on the toxic effects of the polymers on normal cells; the effects of the temperature sensitive glucosyl polymers and lectin on the growth of hepatoma cells in different structures. The results show that the structural regularity of the temperature sensitivity of @AuNPs and agglutinin is best. The recognition efficiency of the polymer was better than that of the ungrafted AuNPs; the more glycosyl sites exposed on the surface of the molecule, the recognition efficiency of the micelles and agglutinin will also be improved; the synthesized polymer materials have good biocompatibility to normal cells, and the polymer @AuNPs micelles are fine for liver cancer after identification with the agglutinin. The normal growth of cell cells has inhibitory effect. The fifth chapter summarizes the main contents of the subject. Through the research of this topic, the future research is prospected.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1;R735.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 竇紅靜,孫康;全親水性嵌段共聚物及其超分子自組裝[J];化學(xué)進(jìn)展;2005年05期
2 劉慧慧,李太武,蘇秀榕;植物凝集素及其在生殖細(xì)胞表面糖復(fù)合物檢測(cè)中的應(yīng)用[J];自然雜志;2003年06期
3 王海燕,白曉春,羅深秋;植物凝集素與醫(yī)學(xué)應(yīng)用[J];生命的化學(xué);2003年03期
4 朱健,王永昌,王勤;膠體金納米顆粒的熒光光譜特性[J];光子學(xué)報(bào);2003年03期
5 侯士敏,陶成鋼,劉虹雯,趙興鈺,劉惟敏,薛增泉;高定向石墨表面金納米粒子和金納米線的研究[J];物理學(xué)報(bào);2001年02期
6 李友蓮,吳海軍;植物凝集素對(duì)桃蚜生長發(fā)育的影響[J];山西農(nóng)業(yè)大學(xué)學(xué)報(bào);2000年02期
7 袁玉林,雷岳山,張友云,周新華,馮曉群,孟曉萍,戴冀斌,譚政;凝集素在大鼠心臟缺血預(yù)處理中的應(yīng)用[J];解剖學(xué)雜志;2000年01期
8 高燕會(huì),李潤植,毛雪,李彩霞;植物凝集素的防衛(wèi)功能及其研究進(jìn)展[J];世界農(nóng)業(yè);2000年02期
9 胡瑞省,劉善堂,朱濤,劉忠范,黃小華,黃惠忠;金納米粒子通過形成Au-S鍵的組裝[J];物理化學(xué)學(xué)報(bào);1999年11期
10 王志斌,李學(xué)勇,郭三堆;植物凝集素與抗蟲基因工程[J];生物技術(shù)通報(bào);1998年02期
相關(guān)博士學(xué)位論文 前1條
1 文莉;金團(tuán)簇和納米粒子的合成、表征及應(yīng)用[D];廈門大學(xué);2008年
,本文編號(hào):1823425
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1823425.html