天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

新型碳納米管改性密胺樹脂相變微膠囊的制備及性能表征

發(fā)布時間:2018-04-28 19:23

  本文選題:相變微膠囊 + 碳納米管。 參考:《深圳大學(xué)》2017年碩士論文


【摘要】:能源緊缺和環(huán)境惡化已經(jīng)成為全球性的焦點(diǎn)問題,節(jié)約能源,改變能源利用方式,開發(fā)新的能源類型成為解決這一問題的重要舉措。相變材料是一類可通過自身相態(tài)轉(zhuǎn)變而進(jìn)行熱能存儲和釋放的材料,因而在能量存儲和溫度調(diào)控領(lǐng)域有著廣闊的應(yīng)用前景。本課題主要研究相變儲能微膠囊的應(yīng)用與改性,針對傳統(tǒng)相變微膠囊的導(dǎo)熱性能差,機(jī)械性能不足且存在過冷現(xiàn)象等問題,嘗試引入一種導(dǎo)熱性能好,機(jī)械性能優(yōu)異的無機(jī)粒子填料,制備出有機(jī)-無機(jī)復(fù)合的相變微膠囊,再通過不同的科學(xué)研究手段來對相變微膠囊進(jìn)行表征分析。例如:通過光學(xué)顯微鏡(OM),掃描電鏡(SEM),透射電鏡(TEM),原子力顯微鏡(AFM)及Zetasizer對微膠囊的形貌,粗糙度以及表面電性進(jìn)行表征和分析,通過差示掃描量熱儀(DSC)和熱重分析儀(TGA)對微膠囊的儲熱性能和熱穩(wěn)定性進(jìn)行表征和分析,通過紅外光譜儀(FTIR)和X射線衍射儀(XRD)對微膠囊的組成和結(jié)構(gòu)進(jìn)行表征和分析,通過紅外熱成像儀(FLIR)和Hot Disk熱常數(shù)分析儀(TCA)對微膠囊的調(diào)溫性能和導(dǎo)熱性能進(jìn)行表征和分析,通過納米壓痕儀(Nanoindenter)對微膠囊的力學(xué)性能進(jìn)行表征和分析。主要得出以下結(jié)論:(1)我們通過靜電吸引和氫鍵作用,在密胺樹脂相變微膠囊的表面進(jìn)行層層自組裝改性,成功制備了具有雙殼層結(jié)構(gòu)的相變微膠囊。結(jié)果表明,碳納米管的組裝能夠很好地促進(jìn)相變微膠囊的熔融和結(jié)晶過程,有效地抑制過冷度,使?jié)摕崮軌蚋斓剡M(jìn)行儲存和釋放。而且碳納米管的組裝很好地改善了相變微膠囊的力學(xué)性能和導(dǎo)熱性能,當(dāng)組裝4個(聚苯乙烯磺酸鈉/氨基化碳納米管)((PSS/A-CNTs))雙層時,其平均硬度,楊氏模量和導(dǎo)熱性能相比純密胺樹脂相變微膠囊,分別提高了230%,32.1%,57.89%。(2)當(dāng)壁材摻雜羧基化碳納米管(C-CNTs)后,其表面變得相對粗糙,附著有大量蠕蟲狀的碳納米管,但相變微膠囊的熱穩(wěn)定性有明顯的提高,另外碳納米管的摻雜不僅能夠有效地提高密胺樹脂相變微膠囊的導(dǎo)熱性能,而且能夠顯著改善相變微膠囊的抗壓能力和強(qiáng)度,其最大負(fù)載壓力,平均硬度以及楊氏模量相比純的密胺樹脂微膠囊分別提高了55.1%,60.0%以及30.9%。(3)當(dāng)芯材摻雜烷基化碳納米管(i-CNTs)后,基本不影響相變微膠囊的表面形貌和力學(xué)性能,但在破裂的芯材中能清晰地看到蠕蟲狀的CNTs,而且芯材摻雜i-CNTs后能夠顯著地抑制相變微膠囊的過冷度。(4)通過相變微膠囊/環(huán)氧樹脂復(fù)合材料的導(dǎo)熱系數(shù)測試我們可以發(fā)現(xiàn),碳納米管的層層自組裝改性和物理摻雜改性均能有效地改善密胺樹脂相變微膠囊的導(dǎo)熱性能。由紅外熱成像的表征可以得出,相變微膠囊具有很好的調(diào)溫性能,能夠?qū)?fù)合材料的升溫和降溫過程起到一定的緩沖作用,有效減少溫度波動。
[Abstract]:Energy shortage and environmental deterioration have become the focus of the global problem. Saving energy, changing the way of energy utilization and developing new energy types are the important measures to solve this problem. Phase change material (PCM) is a kind of material which can store and release heat energy through its phase transition, so it has a wide application prospect in the field of energy storage and temperature control. This paper mainly studies the application and modification of phase change energy storage microcapsules. Aiming at the problems of poor thermal conductivity, insufficient mechanical properties and undercooling phenomena of traditional phase change microcapsules, we try to introduce a kind of good thermal conductivity. The organic-inorganic composite phase change microcapsules were prepared with excellent mechanical properties of inorganic particles. The phase change microcapsules were characterized by different scientific research methods. For example, the morphology, roughness and surface electrical properties of microcapsules were characterized and analyzed by optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM) and Zetasizer. The thermal storage and thermal stability of microcapsules were characterized and analyzed by differential scanning calorimeter (DSC-DSC) and thermogravimetric analyzer (TGA). The composition and structure of microcapsules were characterized and analyzed by FTIR and XRD. The thermoregulation and thermal conductivity of microcapsules were characterized and analyzed by infrared thermal imager (FLIR) and Hot Disk thermal constant analyzer. The mechanical properties of microcapsules were characterized and analyzed by nano-indentation instrument. The main conclusions are as follows: (1) by electrostatic attraction and hydrogen bonding, we successfully prepared phase change microcapsules with double shell structure by layer self-assembly modification on the surface of phase change microcapsules of melamine resin. The results show that the assembly of carbon nanotubes can promote the melting and crystallization of phase change microcapsules effectively restrain the undercooling and make the latent heat be stored and released more quickly. Moreover, the assembly of carbon nanotubes improves the mechanical properties and thermal conductivity of phase change microcapsules, and the average hardness of four (sodium polystyrene sulfonate / carbon amino-carbon nanotubes) bilayers is obtained. Compared with the phase change microcapsules of pure melamine resin, the Young's modulus and thermal conductivity were increased by 230% ~ 32. 1 and 57.89. 2) when the wall materials were doped with carboxylated carbon nanotubes (C-CNTs), the surface became relatively rough and a large number of wormlike carbon nanotubes were attached to them. However, the thermal stability of phase change microcapsules was improved obviously. In addition, the doping of carbon nanotubes could not only effectively improve the thermal conductivity of phase change microcapsules of melamine resin, but also improve the compressive resistance and strength of phase change microcapsules. The maximum loading pressure, average hardness and Young's modulus were increased by 55.1% and 30.9%, respectively, compared with the pure melamine resin microcapsules. When the core material was doped with alkylated carbon nanotubes (i-CNTs), the surface morphology and mechanical properties of the phase change microcapsules were not affected. However, the wormlike CNTs can be seen clearly in the cracked core, and the supercooling degree of phase change microcapsules can be significantly inhibited by doping i-CNTs into the core material.) the thermal conductivity of phase change microcapsules / epoxy resin composites can be measured by the thermal conductivity test. Layer by layer self-assembly modification and physical doping modification of carbon nanotubes can effectively improve the thermal conductivity of phase change microcapsules of melamine resin. From the characterization of infrared thermal imaging, it can be concluded that the phase change microcapsules have good temperature-regulating properties, which can play a certain role in cushioning the temperature and cooling process of the composites, and effectively reduce the temperature fluctuation.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB34

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳嘉峰;郝英立;施明恒;;相變微膠囊功能流體融化狀態(tài)的數(shù)值模擬[J];工程熱物理學(xué)報;2007年05期

2 馬保國;金磊;蹇守衛(wèi);;石蠟相變微膠囊的制備及在建材中的應(yīng)用[J];建材世界;2009年01期

3 趙凱;俞從正;;相變微膠囊保溫材料的研究、制備和應(yīng)用[J];西部皮革;2009年15期

4 楊驍博;袁衛(wèi)星;姜軍;;不同溫區(qū)相變微膠囊的制備及研究進(jìn)展[J];制冷;2009年04期

5 趙凱;俞從正;馬興元;高大鵬;;相變微膠囊保溫材料的研究、制備和應(yīng)用[J];皮革與化工;2010年02期

6 馬烽;李永超;陳明輝;宗學(xué)剛;;蜜胺樹脂/硬脂酸丁酯相變微膠囊的制備[J];材料工程;2010年07期

7 劉向;魏菊;于海飛;劉玲;;石蠟相變微膠囊及蓄熱調(diào)溫織物的制備及性能研究[J];大連工業(yè)大學(xué)學(xué)報;2010年05期

8 劉先之;劉凌志;門永鋒;;石蠟相變微膠囊的制備與表征[J];應(yīng)用化學(xué);2012年01期

9 劉元軍;王雪燕;宋秉政;;相變微膠囊的制備工藝[J];印染助劑;2013年01期

10 王執(zhí)乾;王月祥;白翰林;;紅外隱身用相變微膠囊材料的制備[J];山西化工;2013年05期

相關(guān)會議論文 前6條

1 閔潔;壽晨燕;朱泉;潘建君;;相變微膠囊的制備及其相變性能的研究[A];第一屆廣東紡織助劑行業(yè)年會論文集[C];2009年

2 曾若浪;陳斌嬌;王馨;張寅平;王懿;狄洪發(fā);;相變微膠囊及其懸浮液的兩種潛熱測量方法[A];制冷空調(diào)新技術(shù)進(jìn)展——第四屆全國制冷空調(diào)新技術(shù)研討會論文集[C];2006年

3 任曉亮;任麗;王立新;;環(huán)保節(jié)能型相變微膠囊的制備及應(yīng)用[A];2004年中國材料研討會論文摘要集[C];2004年

4 葉星;陳艷;陳大柱;;耐黃變聚脲包覆正十八烷相變微膠囊的制備和儲熱性能[A];2012年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(下冊)[C];2012年

5 任曉亮;王立新;任麗;;聚脲型相變微膠囊的制備[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年

6 陳艷;歐陽星;葉星;陳雪飛;張海玲;陳大柱;;環(huán)氧樹脂/相變微膠囊/CNT復(fù)合材料的制備及動態(tài)力學(xué)性能[A];2013年全國高分子學(xué)術(shù)論文報告會論文摘要集——主題J:高分子復(fù)合體系[C];2013年

相關(guān)碩士學(xué)位論文 前10條

1 張健;潛熱型功能流體儲熱特性實驗與數(shù)值模擬研究[D];中國科學(xué)院研究生院(工程熱物理研究所);2015年

2 劉欽礦;三聚氰胺改性脲醛樹脂相變微膠囊的制備及性能分析[D];上海應(yīng)用技術(shù)學(xué)院;2015年

3 賀珊珊;密胺樹脂及聚脲壁材相變微膠囊的制備與表征[D];哈爾濱工業(yè)大學(xué);2015年

4 李婷婷;單分散Bi-Ga相變微膠囊制備及熱循環(huán)穩(wěn)定性[D];大連理工大學(xué);2015年

5 于佳利;添加相變微膠囊復(fù)合工質(zhì)的傳熱性能研究[D];石家莊鐵道大學(xué);2015年

6 彭佩;聚脲相變微膠囊的制備及其應(yīng)用性能研究[D];東華大學(xué);2016年

7 樓櫻紅;溶膠—凝膠法制備相變微膠囊及其在織物上的應(yīng)用[D];東華大學(xué);2013年

8 彭微微;基于相變微膠囊技術(shù)對蓄熱調(diào)溫織物的研究[D];浙江理工大學(xué);2016年

9 惠龍;導(dǎo)熱增強(qiáng)型相變微膠囊的制備與應(yīng)用[D];東南大學(xué);2015年

10 李俊;微流控技術(shù)制備相變微膠囊的研究[D];廣東工業(yè)大學(xué);2016年

,

本文編號:1816552

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1816552.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a420c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com