摻雜ZnO納米材料的制備及其光電器件的應用研究
發(fā)布時間:2018-04-25 15:19
本文選題:ZnO + 摻雜ZnO; 參考:《北京交通大學》2017年碩士論文
【摘要】:ZnO是一種寬帶隙的半導體材料,具有優(yōu)良的光電性能和較高的化學穩(wěn)定性,在發(fā)光器件和太陽能電池等領域有著廣泛的應用,受到了研究人員越來越多的關注。近年來,ZnO納米顆粒由于其特殊的電子結(jié)構(gòu)和潛在的光電應用而受到人們廣泛的關注。摻雜是一種有效的調(diào)控半導體納米材料光電性質(zhì)的重要手段之一,將適量的過渡金屬離子摻雜到ZnO納米顆粒中能夠有效的改變其光學性能。本論文選取了 In3+和Mg2+作為摻雜離子,研究了其摻雜離子前后ZnO納米顆粒的形貌、晶型、光學性質(zhì)以及電學性質(zhì)的變化。主要研究內(nèi)容如下:1、采用溶膠凝膠方法以乙酸鋅和四甲基氫氧化銨(TMAH)作為原料制備出尺寸小于10 nm的六方纖鋅礦結(jié)構(gòu)的ZnO納米顆粒,其吸收峰位置位于355 nm,光致發(fā)光光譜由位于385 nm處較弱的藍紫光和位于565 nm處較強的黃綠光組成,前者來源于ZnO的激子發(fā)射,而后者主要來源于ZnO內(nèi)部的缺陷發(fā)射。在此基礎之上,將乙酸銦作為銦源在ZnO納米材料中引入In3+制備出ZnO:In3+納米顆粒,隨著In3+摻雜濃度的增加,顆粒的尺寸有所減小,而晶型仍然保持著六方纖鋅礦結(jié)構(gòu)。另外,隨著摻雜濃度的增加,納米顆粒的光學帶隙從3.17eV變化到3.28eV,說明In3+的引入會增大材料的帶隙。為了進一步研究摻雜離子對ZnO納米顆粒的晶型、尺寸和形貌的影響,我們以乙酸鎂作為鎂離子的原料,制備出了 ZnO:Mg2+納米顆粒,結(jié)果表明Mg2+摻雜濃度的增加也會造成納米顆粒尺寸的減小,同時其光學帶隙也會有所增加,這可能是由于Moss-Burtein效應造成的。但是,其X射線粉末衍射峰的峰位隨著摻雜濃度的增加向較大2θ角方向移動,這可能是由于Mg2+比Zn2+半徑小造成的。從兩種摻雜不同金屬離子的ZnO納米顆粒的發(fā)光光譜我們發(fā)現(xiàn),隨著摻雜離子濃度的增加,藍紫光的發(fā)光強度減弱,而黃綠光部分的發(fā)光峰強度有所增強,且發(fā)光峰位置有所藍移,這可能是由于隨著摻雜離子濃度的增加,光致發(fā)光逐漸由ZnO內(nèi)部的缺陷發(fā)射轉(zhuǎn)變?yōu)閾诫s離子相關的發(fā)射。2:我們以無鎘半導體量子點Cu-In-Zn-Se作為發(fā)光層,以ZnO:In3+納米顆粒和聚合物poly-TPD分別作為電子和空穴傳輸層制備了器件結(jié)構(gòu)為ITO/PEDOT:PSS/Poly-TPD/Cu-In-Zn-Se量子點/ZnO:In3+/Al的發(fā)光器件,結(jié)果表明隨著ZnO:In3+納米顆粒中In3+摻雜濃度的增加,發(fā)光器件的啟亮電壓由3V增加到5 V,In3+摻雜比例為5%時的發(fā)光器件的電流效率大于摻雜比例為1%和10%時的發(fā)光器件,其最大電流效率可達到0.36 cd/A。
[Abstract]:ZnO is a kind of wide band gap semiconductor material with excellent photoelectric performance and high chemical stability. It has been widely used in the field of luminescent devices and solar cells and has attracted more and more attention. In recent years, ZnO nanoparticles have attracted wide attention due to their special electronic structure and potential optoelectronic applications. Doping is one of the most important methods to control the photoelectric properties of semiconductor nanomaterials. Doping appropriate amount of transition metal ions into ZnO nanoparticles can effectively change their optical properties. In this paper, In3 and Mg2 were selected as doped ions to study the changes of morphology, crystal form, optical properties and electrical properties of ZnO nanoparticles before and after doping. The main research contents are as follows: 1. ZnO nanoparticles with hexagonal wurtzite structure smaller than 10 nm were prepared by sol-gel method using zinc acetate and tetramethylammonium hydroxide (TMAH) as raw materials. The absorption peak is located at 355 nm. The photoluminescence spectra are composed of weak blue violet at 385 nm and yellowish green at 565 nm. The former is derived from the exciton emission of ZnO, while the latter is mainly from the defect emission inside the ZnO. On this basis, ZnO:In3 nanoparticles were prepared by introducing indium acetate as indium source into ZnO nanomaterials. With the increase of In3 doping concentration, the size of ZnO:In3 nanoparticles decreased, while the crystal structure remained hexagonal wurtzite structure. In addition, with the increase of doping concentration, the optical band gap of nanoparticles changes from 3.17eV to 3.28 EV, which indicates that the introduction of In3 will increase the band gap of the material. In order to further study the effect of doped ions on the crystal shape, size and morphology of ZnO nanoparticles, ZnO:Mg2 nanoparticles were prepared by using magnesium acetate as the raw material of magnesium ions. The results show that the increase of Mg2 doping concentration will also decrease the size of nanoparticles and increase the optical band gap, which may be due to the Moss-Burtein effect. However, the peak position of the X-ray powder diffraction peak shifts to a larger 2 胃 angle with the increase of doping concentration, which may be due to the smaller radius of Mg2 than that of Zn2. From the luminescence spectra of two kinds of ZnO nanoparticles doped with different metal ions, we found that with the increase of doping ion concentration, the luminescence intensity of blue violet light decreases, while the luminescence peak intensity of yellowish-green part increases. The blue shift of the luminescence peak position may be due to the change of photoluminescence from the defect emission in ZnO to the dopant ion dependent emission. 2. We use cadmium free semiconductor quantum dot Cu-In-Zn-Se as the luminescent layer. ZnO:In3 nanoparticles and polymer poly-TPD were used as electron transport layer and hole transport layer respectively to fabricate ITO/PEDOT:PSS/Poly-TPD/Cu-In-Zn-Se quantum dots / ZnO: in / Al / Al devices. The results show that the doping concentration of In3 in ZnO:In3 nanoparticles increases with the increase of In3 doping concentration. The current efficiency of the luminescent device is higher than that of the luminescent device with doping ratio of 1% and 10%, and the maximum current efficiency can reach 0.36 cd/ Awhen the starting voltage of the luminescent device increases from 3 V to 5 V in 3%.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB383.1;TN15
【參考文獻】
相關期刊論文 前3條
1 李瑛娟;陳清明;馬吉;;稀土摻雜ZnO薄膜的研究進展[J];材料導報;2012年15期
2 劉桂香;徐光亮;羅慶平;;不同方法合成摻雜ZnO粉體制備ZnO壓敏電阻[J];化工進展;2007年02期
3 賈廣平;;氧化鋅壓敏電阻器的性能及應用[J];電子元器件應用;2000年10期
,本文編號:1801878
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1801878.html
最近更新
教材專著