復(fù)合材料負(fù)泊松比結(jié)構(gòu)振動(dòng)和阻尼性能研究
發(fā)布時(shí)間:2018-04-24 15:41
本文選題:負(fù)泊松比結(jié)構(gòu) + 模態(tài)應(yīng)變能法; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:作為新一代先進(jìn)的吸能、耗能結(jié)構(gòu),負(fù)泊松比結(jié)構(gòu)的力學(xué)性能得到了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注。目前,關(guān)于該結(jié)構(gòu)的設(shè)計(jì)制備、靜力學(xué)性能以及沖擊吸能等方面已獲得大量研究成果,但對(duì)該結(jié)構(gòu)的振動(dòng)阻尼性能的研究仍處于起步階段。本文基于結(jié)構(gòu)阻尼一體化思想,設(shè)計(jì)了復(fù)合材料雙箭頭和內(nèi)凹蜂窩兩種負(fù)泊松比結(jié)構(gòu)和混雜復(fù)合材料負(fù)泊松比波紋夾芯板結(jié)構(gòu),通過(guò)數(shù)值模擬與實(shí)驗(yàn)表征的方法研究其固有振動(dòng)特性與阻尼性能。主要包括以下內(nèi)容。首先設(shè)計(jì)了二維雙箭頭與內(nèi)凹蜂窩負(fù)泊松比結(jié)構(gòu),基于模態(tài)應(yīng)變能法,采用數(shù)值方法研究了幾何參數(shù)對(duì)結(jié)構(gòu)振動(dòng)與阻尼性能的影響。結(jié)果表明,結(jié)構(gòu)的幾何參數(shù)的變化能夠有效的改變結(jié)構(gòu)的固有頻率與阻尼損耗因子。之后在二維結(jié)構(gòu)的基礎(chǔ)上,設(shè)計(jì)出三維雙箭頭與內(nèi)凹蜂窩結(jié)構(gòu),研究了結(jié)構(gòu)的幾何參數(shù)與纖維鋪層角度對(duì)固有頻率與阻尼損耗因子的影響。研究發(fā)現(xiàn),相對(duì)于三維內(nèi)凹蜂窩結(jié)構(gòu),三維雙箭頭結(jié)構(gòu)的固有頻率對(duì)單胞角度更加敏感。最后采用共固化模壓成型法制備了含粘彈性阻尼層的混雜復(fù)合材料負(fù)泊松比波紋夾芯板,采用數(shù)值模擬與實(shí)驗(yàn)表征的方法研究其振動(dòng)與阻尼性能。研究發(fā)現(xiàn),相較于復(fù)合材料負(fù)泊松比波紋夾芯板,多級(jí)材料混雜復(fù)合材料在不明顯改變結(jié)構(gòu)剛度的同時(shí)能顯著提高結(jié)構(gòu)的阻尼損耗因子,降低結(jié)構(gòu)共振幅值。
[Abstract]:As a new generation of advanced energy absorption, energy dissipation structure, negative Poisson ratio structure, the mechanical properties of the structure has been widely concerned by domestic and foreign scholars. At present, a great deal of research results have been obtained on the design, fabrication, statics performance and shock energy absorption of the structure, but the study on the vibration damping performance of the structure is still in its infancy. In this paper, based on the idea of structural damping integration, two kinds of negative Poisson's ratio structure and hybrid composite's negative Poisson's ratio corrugated sandwich plate structure are designed. The natural vibration characteristics and damping properties are studied by means of numerical simulation and experimental characterization. Mainly include the following content. In this paper, the negative Poisson ratio structure with double arrowhead and concave honeycomb is designed. Based on the modal strain energy method, the effect of geometric parameters on the vibration and damping performance of the structure is studied numerically. The results show that the change of geometric parameters can effectively change the natural frequency and damping loss factor of the structure. Based on the two-dimensional structure, the three-dimensional double-arrowhead and concave honeycomb structures are designed, and the effects of geometric parameters and fiber laying angle on the natural frequency and damping loss factor are studied. It is found that the natural frequency of the three-dimensional double-arrowhead structure is more sensitive to the unit cell angle than that of the three-dimensional concave honeycomb structure. Finally, the negative Poisson's ratio corrugated sandwich plate of hybrid composites with viscoelastic damping layer was prepared by co-curing molding. The vibration and damping properties of hybrid composites were studied by numerical simulation and experimental characterization. It is found that compared with the composite material with negative Poisson's ratio corrugated sandwich panel, the multistage hybrid composite can significantly increase the damping loss factor and decrease the co-amplitude of the structure without obviously changing the structural stiffness.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB33;O327
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 吳大方;趙壽根;潘兵;王岳武;王杰;牟朦;朱林;;高速飛行器中空翼結(jié)構(gòu)高溫?zé)嵴駝?dòng)特性試驗(yàn)研究[J];力學(xué)學(xué)報(bào);2013年04期
2 趙云峰;游少雄;;結(jié)構(gòu)/阻尼一體化復(fù)合材料技術(shù)及其應(yīng)用研究進(jìn)展[J];材料工程;2012年11期
3 杜善義;;先進(jìn)復(fù)合材料與航空航天[J];復(fù)合材料學(xué)報(bào);2007年01期
相關(guān)博士學(xué)位論文 前1條
1 葛朝陽(yáng);三維負(fù)泊松比織物結(jié)構(gòu)的設(shè)計(jì)制造和變形機(jī)理研究[D];東華大學(xué);2014年
相關(guān)碩士學(xué)位論文 前1條
1 楊金水;復(fù)合材料點(diǎn)陣夾芯結(jié)構(gòu)阻尼特性的研究[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):1797245
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1797245.html
最近更新
教材專著