天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

RAFT聚合誘導(dǎo)自組裝制備形貌可控的納米顆粒

發(fā)布時(shí)間:2018-04-24 01:15

  本文選題:RAFT異相聚合 + 星型高分子 ; 參考:《上海大學(xué)》2015年碩士論文


【摘要】:球形、纖維等多種聚合物納米顆粒由于具有小尺寸、可多功能化及形貌可調(diào)等優(yōu)點(diǎn),在生物醫(yī)藥、催化劑、食品、分析檢測及化學(xué)工業(yè)等諸多領(lǐng)域具有潛在的應(yīng)用。兩親性嵌段共聚物在溶液中可以通過選擇性溶劑、改變親水和疏水段的鏈長、分子量、p H、鹽濃度、單體種類和性質(zhì)等來制備球狀、棒狀、層狀、囊泡等形貌,這些納米顆?蓱(yīng)用于藥物釋放、催化等領(lǐng)域。在本文中,為了得到尺寸均勻、結(jié)構(gòu)穩(wěn)定、分子量和形貌可控的納米顆粒,我們通過可逆加成斷裂鏈轉(zhuǎn)移(RAFT)異相聚合誘導(dǎo)自組裝合成了多種雙親性高分子,并系統(tǒng)地研究了其動(dòng)力學(xué)過程和影響形貌的各個(gè)因素,通過進(jìn)一步功能化進(jìn)行修飾得到了各種功能化的納米顆粒。具體的研究內(nèi)容和結(jié)果如下:1.星型高分子是一種具有多于三條鏈且有明確中心分枝點(diǎn)的聚合物,由于其結(jié)構(gòu)規(guī)整、粘度低、比表面積大被廣泛地用作藥物輸送、表面活性劑、反應(yīng)器和催化劑等。本文選擇聚N,N-二甲基丙烯酰胺(PDMA)作為高分子臂,合成了親水的星型高分子,然后將合成的窄分布星型高分子作為大分子鏈轉(zhuǎn)移劑(Macro-CTA)和納米粒子的表面穩(wěn)定劑,利用RAFT乳液聚合來進(jìn)一步聚合苯乙烯。具體研究了星型高分子作為Macro-CTA和納米粒子的表面穩(wěn)定劑對乳液聚合動(dòng)力學(xué)的影響。為了突出星型高分子作為Macro-CTA對反應(yīng)的影響,我們選擇了線型PDMA與苯乙烯進(jìn)行乳液聚合與之進(jìn)行對比;研究了固體含量和苯乙烯與Macro-CTA的質(zhì)量比對所形成納米顆粒形貌的影響。實(shí)驗(yàn)結(jié)果表明星型高分子調(diào)控苯乙烯的乳液聚合無誘導(dǎo)期,轉(zhuǎn)化速率比傳統(tǒng)線型高分子快,且通過增加固體含量發(fā)生了由球形到棒狀的形貌轉(zhuǎn)換。2.通過聚合誘導(dǎo)自組裝能夠在高固體含量條件下一步制備不同形貌的高分子顆粒,但通過該方法制得多功能化高分子顆粒的文獻(xiàn)并不多。乙酰乙酸甲基丙烯酸乙二醇酯(AEMA)是一種含有β-酮酯官能團(tuán)的單體,β-酮酯的存在,使該單體或其聚合物能夠在一定條件下與羥胺或雙羥胺發(fā)生反應(yīng),生成肟。另外,β-酮酯能與金屬離子譬如銀離子絡(luò)合,然后在還原劑的還原下生成金屬顆粒。通過實(shí)驗(yàn)得出AEMA單體在乙醇中是溶解的,而其高分子在乙醇中是不溶的,符合分散聚合體系的要求。因此本文選擇了功能化單體AEMA作為憎溶劑鏈段和生物兼容性好的聚[聚(乙二醇)甲基醚甲基丙烯酸酯](PPEGMA)作為親溶劑鏈段,通過RAFT分散聚合合成雙親性的高分子顆粒。在該課題中我們具體研究了AEMA在乙醇中分散聚合的動(dòng)力學(xué)過程,并討論了固體含量和PAEMA嵌段的聚合度對其形貌的影響。我們還通過設(shè)計(jì)實(shí)驗(yàn)研究了單體AEMA在RAFT分散聚合體系中合成的高分子RAFT不可控原因。然后我們將合成的高分子顆粒直接進(jìn)行了一系列的功能化,合成了大小均一、結(jié)構(gòu)穩(wěn)定的功能化高分子顆粒。最后我們將AEMA作為功能單體與甲基丙烯酸芐酯(Bz MA)共聚,研究了該聚合的動(dòng)力學(xué)和功能化等。實(shí)驗(yàn)結(jié)果表明,可以通過改變AEMA與PPEGMA的摩爾比和固體含量來控制高分子顆粒的粒徑和形貌,而且直接將高分子顆粒進(jìn)行下一步的功能化反應(yīng),轉(zhuǎn)化效率高、穩(wěn)定性好,有很大的應(yīng)用潛能。3.水是一種經(jīng)濟(jì)、對環(huán)境友好的溶劑,但水分散聚合的研究并不多,主要是因?yàn)檫m合水分散聚合的單體種類比較少,因此發(fā)展出新的適合水分散聚合的體系對分散聚合的發(fā)展非常重要。在本課題中我們選擇了一種帶有酮的功能單體雙丙酮丙烯酰胺(DAAM)進(jìn)行水分散聚合,著重研究了聚合過程中的動(dòng)力學(xué),發(fā)現(xiàn)DAAM在聚合過程中轉(zhuǎn)化效率高且完全。在研究高分子顆粒的形貌過程中,我們發(fā)現(xiàn)改變PDAAM嵌段長度和固體含量時(shí),所形成的嵌段高分子納米顆粒的形貌可以由球形轉(zhuǎn)變?yōu)槟遗。?dāng)固體含量高于10%時(shí),我們得到的囊泡粒徑分散的很不均勻。為了制備大小均勻、穩(wěn)定的囊泡,我們降低了引發(fā)劑與PDMA的比例,通過測試動(dòng)態(tài)光散射(DLS)和透射電子顯微鏡(TEM)我們發(fā)現(xiàn)在相同的PDAAM嵌段長度和固體含量下,引發(fā)劑與PDMA的比例越低,得到的囊泡分散的越均勻。
[Abstract]:Spherical, fiber and other polymer nanoparticles have potential applications in many fields, such as biomedicine, catalyst, food, analysis detection and chemical industry, because of their small size, multifunction and adjustable morphologies. Two amphiphilic block copolymers can change the chain length of hydrophilic and hydrophobic segments in the solution by selective solvents. The molecular weight, P H, salt concentration, monomer type and properties are used to prepare spherical, rod, layered, vesicles, etc. these nanoparticles can be applied to drug release, catalysis and other fields. In this paper, in order to obtain nanoparticles with uniform size, stable structure, molecular weight and morphologies, we can reversibly add fracture chain transfer (RAFT) to the heterogeneous polymerization. A variety of amphiphilic polymers are synthesized by induction self-assembly, and the dynamic processes and various factors affecting the morphology are systematically studied. The functionalized nanoparticles are obtained by further functionalization. The specific content and results are as follows: the 1. star type high score is a kind of more than three chains and is clearly in the form. The polymer of the branching point is widely used as drug delivery, surfactant, reactor and catalyst, because of its regular structure, low viscosity and large surface area. In this paper, poly N, N- two methyl acrylamide (PDMA) was selected as the polymer arm to synthesize the hydrophilic star type high molecule, and then the synthetic narrow distribution star type polymer was used as the big fraction. The subchain transfer agent (Macro-CTA) and the surface stabilizer of nanoparticles are used to polymerize the styrene by RAFT emulsion polymerization. The effect of the star type polymer as the surface stabilizer of Macro-CTA and nanoparticles on the kinetics of emulsion polymerization is studied. In order to highlight the effect of the star type polymer on the reaction of the Macro-CTA, we choose to The influence of the solid content and the mass ratio of styrene to Macro-CTA on the morphology of the nanoparticles was studied. The experimental results showed that the star type polymer had no induction period for the emulsion polymerization of styrene, and the conversion rate was faster than that of the line type polymer, and the solid content was increased by the PDMA. The morphologies from spherical to rod like.2. can be prepared with different morphologies at a high solid content by polymerization induced self-assembly. However, there are few literature on the preparation of Polyfunctionalized polymer particles by this method. Acetoacetic acid methyl acrylate (AEMA) is a kind of functional group containing beta ketone ester (two). The presence of a monomer, beta ketone makes the monomer or its polymer react with hydroxylamine or hydroxylamine to produce oxime under certain conditions. In addition, the beta ketone can be complex with metal ions, such as silver ions, and then produce metal particles in the reduction of the reducing agent. Through experiments, the AEMA monomer is dissolved in ethanol and its polymer is in Ethanol is insoluble and conforms to the requirements of the dispersion polymerization system. Therefore, the functional monomer AEMA is selected as a hydrophobic chain segment and biocompatible poly (ethylene glycol) methyl ether methacrylate] (PPEGMA) as a pro solvent chain, and the amphiphilic polymer particles are synthesized by RAFT dispersion polymerization. The kinetic process of AEMA dispersion polymerization in ethanol was studied. The influence of the solid content and the degree of polymerization of the PAEMA block on its morphology was discussed. We also studied the uncontrollable cause of the polymer RAFT synthesized in the RAFT dispersion polymerization system by the design experiment. Then we made the synthesized polymer particles directly. A series of functionalization has been made to synthesize functional polymer particles with uniform size and stable structure. Finally, we have studied the kinetics and functionalization of AEMA as a functional monomer and benzyl methacrylate (Bz MA). The experimental results show that high fraction can be controlled by changing the molar ratio of AEMA to PPEGMA and the solid content. The particle size and morphology of the particles, and directly to the polymer particles in the next step of the functional reaction, high efficiency, good stability, and has great potential application potential.3. water is a kind of economic, environmentally friendly solvent, but water dispersion polymerization research is not much, mainly because the types of monomers suitable for water dispersion polymerization are relatively few, therefore hair The development of a new system suitable for water dispersion polymerization is very important for the development of dispersion polymerization. In this subject, we chose a functional monomer, double acetone acrylamide (DAAM) with ketone, for water dispersion polymerization, focusing on the kinetics in the polymerization process. It was found that DAAM was highly efficient and complete in the polymerization process. During the morphology of the subparticles, we found that when the length of PDAAM block and the solid content were changed, the morphology of the embedded polymer nanoparticles could be transformed from spherical to vesicles. When the solid content was higher than 10%, the size of the vesicles was very uneven. In order to prepare the uniform and stable vesicles, we reduced the lead. The ratio of hair agent to PDMA, by testing dynamic light scattering (DLS) and transmission electron microscopy (TEM), we found that under the same PDAAM block length and solid content, the lower the ratio of the initiator to PDMA, the more evenly distributed the vesicles were obtained.

【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;TQ317

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張建華;郭睿威;戚桂村;劉梅;董岸杰;;RAFT聚合制備結(jié)構(gòu)明確的熒光標(biāo)識聚甲基丙烯酸甲酯[J];高分子學(xué)報(bào);2010年06期

2 王平華;李鳳妍;唐龍祥;劉春華;楊鶯;;RAFT聚合方法在碳納米管表面接枝嵌段共聚物[J];高分子材料科學(xué)與工程;2007年06期

3 周艷麗;姚洪偉;王雪飛;;通過RAFT聚合合成星型聚合物[J];應(yīng)用化工;2008年03期

4 靳清;姚洪偉;;RAFT聚合制備星型聚合物(英文)[J];科學(xué)技術(shù)與工程;2011年09期

5 白瑋;張亮;白如科;張廣照;;有氧條件下N-異丙基丙烯酰胺的室溫水相RAFT聚合[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);2008年01期

6 張平;蘭延勛;呂滿庚;;通過RAFT聚合方法合成具有高強(qiáng)度和高溶脹率的納米水凝膠[J];精細(xì)化工;2007年12期

7 李光華;王廣東;聶良瑞;汪春英;黃義忠;童張法;;丙烯酰胺基偶氮苯的RAFT聚合反應(yīng)動(dòng)力學(xué)[J];化學(xué)研究與應(yīng)用;2012年07期

8 孫圢;石萌;巫寒冰;朱燕平;聶華麗;權(quán)靜;朱利民;;RAFT聚合制備溫敏性含糖共聚物[J];精細(xì)化工;2013年12期

9 朱健;朱秀林;程振平;張正彪;張偉;;硫代羰基化合物中Z和R基團(tuán)結(jié)構(gòu)對苯乙烯RAFT聚合的影響[J];中國科技論文在線;2008年06期

10 鄭根華,潘才元;在選擇性溶劑中進(jìn)行RAFT聚合一步合成核交聯(lián)的納米膠束[J];高分子學(xué)報(bào);2005年05期

相關(guān)會(huì)議論文 前8條

1 李海軍;彭樺;彭景陽;徐偉箭;;RAFT聚合制備兩親性嵌段共聚物及其應(yīng)用研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年

2 周年琛;朱秀林;;通過含二茂鐵基團(tuán)的RAFT試劑媒介的苯乙烯RAFT聚合及其聚合物的特性[A];蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文匯編(2008-2009)[C];2010年

3 黃友科;劉強(qiáng);侯騰騰;趙優(yōu)良;;RAFT聚合和點(diǎn)擊反應(yīng)結(jié)合法制備二氧化硅-高聚物雜化材料[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年

4 柳慶春;陳永明;;RAFT聚合一步合成星型聚合物[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年

5 葉磊;胡潔;冉蓉;;苯乙烯在聚乙二醇中的RAFT聚合反應(yīng)[A];2013年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題A:高分子合成[C];2013年

6 劉雪婧;蘇鑫;帥亞;馮玉軍;瞿美臻;;通過RAFT聚合及“點(diǎn)擊化學(xué)”修飾多壁碳納米管的研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊)[C];2009年

7 韓德會(huì);潘才元;;通過RAFT聚合反應(yīng)制備兩親性π型共聚物[A];2005年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年

8 吳陽;張小飛;趙俊飛;余華莉;張正彪;朱秀林;;零價(jià)金屬催化RAFT聚合物末端硫代羰基的可控去除及轉(zhuǎn)化[A];2013年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題A:高分子合成[C];2013年

相關(guān)博士學(xué)位論文 前1條

1 徐學(xué)偉;基于RAFT聚合的復(fù)雜結(jié)構(gòu)共聚物的合成與自組裝行為的研究[D];復(fù)旦大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 周偉;RAFT聚合誘導(dǎo)自組裝制備形貌可控的納米顆粒[D];上海大學(xué);2015年

2 劉斌;原位RAFT聚合及聚丙烯酸酯壓敏膠經(jīng)皮給藥性能的研究[D];天津大學(xué);2012年

3 孫斌;含苯并三唑基團(tuán)單體的RAFT聚合及功能性聚合物的合成[D];蘇州大學(xué);2007年

4 石志鵬;聚合物色譜分析法研究RAFT聚合終止過程[D];天津大學(xué);2012年

5 楊鶯;利用RAFT聚合方法在碳納米管表面接枝聚合物及其改性塑料的研究[D];合肥工業(yè)大學(xué);2007年

6 崔連來;用RAFT聚合方法合成具有生物相容性及“核—?dú)ぁ苯Y(jié)構(gòu)的交聯(lián)膠束藥物載體[D];天津大學(xué);2012年

7 孫艷;環(huán)糊精黃原酸酯引發(fā)的RAFT聚合用于環(huán)糊精改性[D];中國科學(xué)技術(shù)大學(xué);2009年

8 張雅芹;基于RAFT聚合的殼聚糖改性以及二硫代氨基甲酸酯存在下甲基丙烯酸甲酯聚合的研究[D];河北大學(xué);2007年

9 吳秀敏;結(jié)合RAFT聚合和Click chemistry對聚丙烯膜表面可控改性及其性能的研究[D];安徽師范大學(xué);2013年

10 張小飛;零價(jià)金屬催化RAFT聚合物末端硫代羰基的去除及修飾[D];蘇州大學(xué);2013年



本文編號:1794480

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1794480.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶58b0d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com