層狀結(jié)構(gòu)復(fù)合材料的制備及其能量轉(zhuǎn)換與儲存性能研究
本文選題:層狀材料 + 能量轉(zhuǎn)換與儲存 ; 參考:《上海電力學(xué)院》2017年碩士論文
【摘要】:隨著社會的進步和發(fā)展,能源的消耗也是隨之增多,并且伴隨產(chǎn)生的環(huán)境污染問題也是越來越突出。因此為了滿足人類的生產(chǎn)和生活需求,需要開發(fā)新型的清潔能源,而這種新能源還必須是可再生以及環(huán)保型。其中,光催化產(chǎn)氫,鋰離子電池以及超級電容器是解決上述問題比較重要的三種能量轉(zhuǎn)換的途徑。光催化產(chǎn)氫是將太陽能轉(zhuǎn)化成清潔環(huán)保的氫氣的一種重要途徑,不僅可以緩解日漸嚴(yán)重的能源危機還可以解決環(huán)境污染;而鋰離子電池因具有長循環(huán)壽命、高能量密度以及環(huán)境友好型等優(yōu)點,作為一種高效的能量儲存和轉(zhuǎn)換裝置已開始廣泛地應(yīng)用在便攜式電子設(shè)備和電動汽車上;而超級電容器作為另外一種高效的安全的清潔的能量儲存和轉(zhuǎn)換裝置,因具有高功率密度、長壽命以及快速充放電等優(yōu)點而引起了研究者的巨大關(guān)注;诖,為了滿足能量轉(zhuǎn)換的發(fā)展需求,需要設(shè)計新型的電極材料和光催化劑。本文旨在通過對制約光催化劑和電極材料性能的因素的分析,設(shè)計和發(fā)展適用于光催化產(chǎn)氫、鋰離子電池以及超級電容器的新型層狀結(jié)構(gòu)復(fù)合材料,以期實現(xiàn)提高層狀結(jié)構(gòu)復(fù)合材料在能量儲存和轉(zhuǎn)換中的應(yīng)用。本論文的主要內(nèi)容包括以下內(nèi)容:(1)g-C_3N_4因其有著諸多優(yōu)點如價格低廉、不含金屬成分、穩(wěn)定以及高效的光催化活性而受到了廣泛的研究。而傳統(tǒng)的體相的g-C_3N_4不僅比表面積小、光電復(fù)合效率高而且光催化產(chǎn)氫的效率也較低,這嚴(yán)重限制了g-C_3N_4在光催化產(chǎn)氫方面的應(yīng)用;诖,作者通過高溫裂解三聚氰胺獲得體相g-C_3N_4,再經(jīng)過酸處理以及液相剝離得到了分散的g-C_3N_4納米片,最后再輔以Photo-Fenton reaction獲得了一種比表面積高達(dá)348 m~2 g~(-1)的邊緣氧摻雜的層狀多孔g-C_3N_4(HS g-C_3N_4-O)。通過計算發(fā)現(xiàn)HS g-C_3N_4-O的帶隙值僅為2.434 e V,該值遠(yuǎn)低于體相g-C_3N_4的2.7e V,這可能是因為氧原子比氮原子多了一個電子,可以代替氮原子提供額外的電子,此外說明HS g-C_3N_4-O有著更好的傳輸特性以及可以更多的可見光捕獲能力,有效地降低了光生電子和空穴的復(fù)合以及提高了光催化產(chǎn)氫率。HS g-C_3N_4-O的產(chǎn)氫率達(dá)到了202.56 umol h-1,遠(yuǎn)高于體相g-C_3N_4(70.65 umol h-1)和g-C_3N_4納米片(122.56 umol h-1)。(2)基于對贗電容電極材料的導(dǎo)電性以及雙電層電容電極材料的低容量的理解,作者首次導(dǎo)向性地合成了利用金屬有機框架化合物MOFs轉(zhuǎn)化而來的碳材料與聚苯胺(PANI)三明治結(jié)構(gòu)的雜化材料,并將其應(yīng)用于超級電容器測試,發(fā)現(xiàn)其具有很好的電化學(xué)性能。金屬有機框架化合物(MOFs)是由有機配體與金屬或者金屬離子通過自組裝形成的一類新型的多孔材料。近幾年,由MOFs作為模板或者前驅(qū)體得到碳材料,已經(jīng)逐漸地引起了人們的研究興趣。此外聚苯胺(PANI)作為一種贗電容材料,因具有原料易得以及合成簡便等優(yōu)點而被認(rèn)為是一種極具發(fā)展力的贗電容超級電容器電極材料。本文采用8-羥基喹啉作為有機配體和金屬離子Zn~(2+)自組裝形成MOFs作為前驅(qū)體,而后經(jīng)過高溫煅燒形成碳材料,再通過原位聚合的方式與聚苯胺復(fù)合,形成一種新型的三明治雜化材料。在電力密度為1A g~(-1)時,其比電容達(dá)到了477 F g~(-1)。經(jīng)過100次的充放循環(huán),其比電容僅僅損失了10%不到,說明該材料具有很好的循環(huán)穩(wěn)定性。所表現(xiàn)出的優(yōu)異的電化學(xué)性能,可能是因為三明治結(jié)構(gòu)有效地緩解了循環(huán)過程中的體積膨脹以及電極的極化,其次碳材料可有效地提高復(fù)合材料的導(dǎo)電性,而具有贗電容性質(zhì)的聚苯胺可以提高復(fù)合材料的容量。(3)傳統(tǒng)的鋰離子電池所使用的的負(fù)極材料為石墨,而石墨的理論儲鋰容量僅為372 m Ah g~(-1),這嚴(yán)重限制了鋰離子電池在下一代電氣設(shè)備上的應(yīng)用。為此,需要設(shè)計出一種新型的高容量的鋰離子電池負(fù)極材料。而在眾多的負(fù)極材料中,具有二維層狀結(jié)構(gòu)的二硫化鉬(MoS_2)因其理論容量為670 m Ah g~(-1)而受到研究者的廣泛關(guān)注。二硫化鉬(MoS_2)具有與石墨烯類似的層狀結(jié)構(gòu),層與層之間也是通過微弱的范德華力相連在一起,層間距為0.615 nm。作者首次利用殼聚糖輔助液相剝離塊狀二硫化鉬(MoS_2),然后再經(jīng)過高溫煅燒與氫氧化鉀活化得到了MoS_2/氮摻雜的多孔碳的復(fù)合材料,并將其應(yīng)用于鋰離子電池中。在鋰離子電池測試中,當(dāng)電流密度為100 m A g~(-1),其初始比容量達(dá)到了1820 m Ah g~(-1),充放電50圈后,其容量依然可以維持在1260 m Ah g~(-1)。令人可喜的是,該材料在電流密度為5 A g~(-1)時,循環(huán)1000次后容量可以保持在496 m Ah g~(-1)。如此好的鋰電性能,可能是歸因于多孔碳縮短了鋰離子的傳輸距離和電子的擴散距離,同時液相剝離得到的MoS_2納米片可以為鋰離子的嵌入與脫出提供更多的活性位點。(4)基于對鋰離子電池制約因素的分析,作者利用金屬有機框架化合物(MOFs)作為前驅(qū)體合成了顆粒自組裝形成的尖晶石結(jié)構(gòu)的層狀Zn Co_2O_4納米片。本文利用8-羥基喹啉作為有機配體和Zn~(2+)以及Co~(2+)絡(luò)合形成片狀的金屬有機框架化合物(MOFs),然后在空氣中煅燒得到顆粒自組裝形成的層狀Zn Co_2O_4納米片。在形成MOFs的過程中,8-羥基喹啉的大π鍵的存在使得前驅(qū)體形成片狀結(jié)構(gòu),而后在高溫煅燒的過程中π鍵斷裂,得到了顆粒自組裝形成的層狀Zn Co_2O_4納米片。當(dāng)Zn Co_2O_4納米片作為鋰離子負(fù)極材料時,在電流密度為100 m A g~(-1),充放電循環(huán)50圈后其比容量依然高達(dá)1640.8 m Ah g~(-1)。優(yōu)異的儲鋰性能可歸因于Zn Co_2O_4納米片具有大的比表面積(118 m~2 g~(-1)),這樣便擁有了更多的活性位點供鋰離子的嵌入與脫出,其次提高了與電解液的接觸面積,片狀的Zn Co_2O_4可以緩解循環(huán)過程中的體積膨脹。
[Abstract]:With the progress and development of the society, the consumption of energy is also increasing, and the problem of environmental pollution is becoming more and more prominent. In order to meet the needs of human production and life, a new type of clean energy is needed, and the new energy must be regenerated and environmentally friendly. Pool and supercapacitor are three important ways to solve these problems. Photocatalytic hydrogen production is an important way to convert solar energy into clean and environmentally friendly hydrogen. It can not only alleviate the increasingly serious energy crisis but also solve environmental pollution. Lithium ion batteries have long cycle life and high energy density. As an efficient energy storage and conversion device, it has been widely used in portable electronic equipment and electric vehicles as a kind of efficient energy storage and conversion device. As another efficient and safe and clean energy storage and conversion device, the supercapacitor has high power density, long life and fast charging and discharging. The aim of this paper is to design new electrode materials and photocatalysts for the development of energy conversion. The purpose of this paper is to design and develop the photocatalytic hydrogen production, lithium ion battery and supercapacitor by analyzing the factors that restrict the performance of the photocatalyst and the electrode material. The main contents of this paper are as follows: (1) g-C_3N_4 has been widely studied because of its many advantages such as low price, non metal composition, stability and high efficiency of photocatalytic activity. The g-C_3N_4 of the body phase is not only smaller than the surface area, the photoelectric compound efficiency is high and the efficiency of the photocatalytic hydrogen production is also low, which seriously restricts the application of g-C_3N_4 in the photocatalytic hydrogen production. Based on this, the author obtained the body phase g-C_3N_4 by pyrolysis of melamine at high temperature, and then the dispersed g-C_3N_4 nanometers were obtained through the acid treatment and the liquid phase stripping. Finally, a layered porous g-C_3N_4 (HS g-C_3N_4-O) with a surface area up to 348 m~2 g~ (-1) is obtained by Photo-Fenton reaction. The band gap value of HS g-C_3N_4-O is found to be only 2.434 e V, which is far lower than that of the body. This may be because oxygen atoms are more than a nitrogen atom. In addition to providing additional electrons instead of nitrogen atoms, it is shown that HS g-C_3N_4-O has better transmission characteristics and more visible light capture ability, effectively reducing the recombination of photogenerated electrons and holes, and increasing the hydrogen production rate of.HS g-C_3N_4-O to 202.56 umol H-1, far higher than the bulk phase g-C_3N_4 (70.6). 5 umol h-1) and g-C_3N_4 nanoscale (122.56 umol h-1). (2) based on the understanding of the electrical conductivity of the pseudosacp electrode material and the low capacity of the electrical double layer capacitance electrode material, the author first synthesized the hybrid material of the carbon material and the polyaniline (PANI) sandwich structure using the metal organic frame compound MOFs. It is used in supercapacitor testing to find that it has good electrochemical performance. Metal organic frame compound (MOFs) is a new type of porous material formed by self assembly of organic ligands and metal ions or metal ions. In recent years, carbon materials have been obtained by MOFs as a template or precursor, and it has been gradually caused by people. In addition, polyaniline (PANI), as a pseudacapacitor material, is considered to be a highly developed pseudo capacitance supercapacitor electrode material because of its advantages of easy to get raw materials and simple synthesis. This paper uses 8- hydroxyquinoline as an organic ligand and metal ion Zn~ (2+) to form MOFs as a precursor and then passes through. A new type of sandwich hybrid material is formed by a high temperature calcined carbon material and in situ polymerization with polyaniline. When the power density is 1A g~ (-1), the specific capacitance reaches 477 F g~ (-1). After 100 charging and discharging cycles, the specific capacitance is only 10% less than that, indicating that the material has good cyclic stability. The excellent electrochemical performance may be because the sandwich structure effectively relieves the volume expansion and polarization of the electrode during the cycle process. Secondly, the carbon material can effectively improve the conductivity of the composite, while the pseudopoacitive polyaniline can improve the capacity of the composite. (3) the traditional lithium ion battery makes it possible to improve the capacity of the composite. The cathode material used is graphite, while the theoretical lithium storage capacity of the graphite is only 372 m Ah g~ (-1), which seriously restricts the application of lithium ion batteries on the next generation of electrical equipment. Therefore, a new type of high capacity lithium ion battery negative electrode is designed. In many negative electrode materials, the two layer structure is vulcanized. Molybdenum (MoS_2) is widely concerned by the researchers because of its theoretical capacity of 670 m Ah g~ (-1). Molybdenum disulfide (MoS_2) has a layered structure similar to graphene, and the layer and layer are connected by a weak van Edward force. The interval is 0.615 nm. by the author for the first time using chitosan assisted liquid to peel bulk molybdenum disulfide (MoS_2). After high temperature calcination and potassium hydroxide activation, MoS_2/ nitrogen doped porous carbon composite material was obtained and applied to lithium ion battery. In lithium ion battery test, when the current density is 100 m A g~ (-1), its initial specific capacity reaches 1820 m Ah g~ (-1), and after charging and discharging 50 cycles, its capacity can still be maintained at 1260 m Ah g~. (-1). It is gratifying that the material can be maintained at 496 m Ah g~ (-1) after 1000 cycles when the current density is 5 A g~ (-1). The good lithium electrical properties may be attributed to the porous carbon shortening the transmission distance of the lithium ion and the diffusion distance of the electrons, and the liquid phase stripping of the MoS_2 nanoscale can be embedded with the lithium ion. 4. (4) based on the analysis of the restriction factors of lithium ion batteries, the author syntheses the layered Zn Co_2O_4 nanoscale of the spinel structure formed by the self assembly of the metal organic frame compound (MOFs). This paper uses 8- hydroxyquinoline as an organic ligand and Zn~ (2+) and Co~ (2+) complex formation. The sheet metal organic frame compound (MOFs) is then calcined in the air to get the layered Zn Co_2O_4 nanoscale formed by the self-assembly of the particles. In the process of forming MOFs, the existence of the large pi bond of 8- hydroxyl quinoline causes the precursor to form a slice like structure, and then the pi bond is broken in the calcined process of high temperature, and the layer formed by the particle self assembly is obtained. When Zn Co_2O_4 nanoscale is a lithium ion anode material, the current density is 100 m A g~ (-1), and the specific capacity is still up to 1640.8 m Ah g~ (-1) after 50 cycles of charge discharge cycle. The excellent lithium storage property is attributable to the large specific surface area (118). The insertion and removal of lithium ions by sex sites increased the contact area with the electrolyte, and flake Zn Co_2O_4 could ease the volume expansion during cycling.
【學(xué)位授予單位】:上海電力學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33
【相似文獻】
相關(guān)期刊論文 前10條
1 陳新麗;李偉善;;超級電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
2 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級電容器研究進展[J];材料導(dǎo)報;2011年15期
3 梓文;;超高能超級電容器[J];兵器材料科學(xué)與工程;2013年04期
4 ;歐盟創(chuàng)新型大功率超級電容器問世[J];功能材料信息;2014年01期
5 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級電容器”[J];環(huán)境與生活;2012年01期
6 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級電容器電極材料的研究進展[J];無機材料學(xué)報;2002年04期
7 朱修鋒,王君,景曉燕,張密林;超級電容器電極材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級電容器氧化物電極材料的研究進展[J];礦冶工程;2003年02期
9 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強;超級電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
10 賀福;碳(炭)材料與超級電容器[J];高科技纖維與應(yīng)用;2005年03期
相關(guān)會議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進展[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財;符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應(yīng)用[A];中國化學(xué)會第15屆反應(yīng)性高分子學(xué)術(shù)討論會論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚;解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設(shè)計、制備及性質(zhì)研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級電容器——多孔碳電極材料的影響[A];中國化學(xué)會第27屆學(xué)術(shù)年會第10分會場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:1779682
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1779682.html