鈦酸鉛顆粒增強(qiáng)銅基復(fù)合材料的性能研究
本文選題:鈦酸鉛 + 銅基復(fù)合材料。 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:本文選擇具有負(fù)膨脹性能的鈦酸鉛(Pb Ti O3,簡(jiǎn)寫(xiě)PT)陶瓷顆粒作為復(fù)合材料的增強(qiáng)體,選擇具有高熱導(dǎo)率的銅作為復(fù)合材料的基體,采用放電等離子燒結(jié)工藝制備了體積分?jǐn)?shù)不同的鈦酸鉛顆粒增強(qiáng)銅基復(fù)合材料。利用物相及微觀組織結(jié)構(gòu)分析方法(XRD、SEM、TEM等)觀察了復(fù)合材料中增強(qiáng)體與基體的形貌、界面特征、增強(qiáng)體與基體中位錯(cuò)孿晶情況。采用熱膨脹儀和熱導(dǎo)率測(cè)試設(shè)備測(cè)試并分析了復(fù)合材料的熱膨脹性能和導(dǎo)熱能力。利用電子萬(wàn)能試驗(yàn)機(jī)測(cè)試了復(fù)合材料的壓縮屈服強(qiáng)度;利用智能電阻測(cè)試儀測(cè)試了復(fù)合材料的電導(dǎo)率。物相和微觀結(jié)構(gòu)分析表明,放電等離子燒結(jié)制備的Pb Ti O3/Cu復(fù)合材料具有清晰光滑的界面形貌,而且看不到明顯的界面反應(yīng),增強(qiáng)體與基體界面結(jié)合較弱。TEM觀察結(jié)果證實(shí)燒結(jié)態(tài)的復(fù)合材料中有大量的位錯(cuò)、孿晶產(chǎn)生,表明復(fù)合材料中存在大量的熱錯(cuò)配應(yīng)力。復(fù)合材料的熱膨脹系數(shù)與PT顆粒的體積分?jǐn)?shù)成負(fù)相關(guān)性,即PT顆粒的體積分?jǐn)?shù)越大,復(fù)合材料的熱膨脹系數(shù)越低。復(fù)合材料界面結(jié)合較弱且內(nèi)部殘余應(yīng)力復(fù)雜,導(dǎo)致復(fù)合材料熱膨脹系數(shù)不穩(wěn)定,但是可以通過(guò)適當(dāng)?shù)臒崽幚韥?lái)提高熱膨脹系數(shù)的穩(wěn)定性。通過(guò)Zr摻雜可以降低鈦酸鉛的居里溫度,PZT/Cu復(fù)合材料在較低溫度就能產(chǎn)生窄而強(qiáng)烈的負(fù)膨脹行。增強(qiáng)體體積分?jǐn)?shù)和分布情況明顯影響復(fù)合材料的熱導(dǎo)率。當(dāng)增強(qiáng)體體積分?jǐn)?shù)較高時(shí),一方面增強(qiáng)體的低熱導(dǎo)率導(dǎo)致整個(gè)復(fù)合材料的熱導(dǎo)率降低,另一方面增強(qiáng)體體積分?jǐn)?shù)較高時(shí),復(fù)合材料中產(chǎn)生了更多的界面,界面阻礙熱傳導(dǎo),從而進(jìn)一步降低復(fù)合材料的熱導(dǎo)率。復(fù)合材料的壓縮屈服強(qiáng)度對(duì)增強(qiáng)體與基體界面狀態(tài)和增強(qiáng)體分布均勻性較敏感。復(fù)合材料的電導(dǎo)率與增強(qiáng)體體積分?jǐn)?shù)成負(fù)相關(guān),且熱循環(huán)會(huì)改善復(fù)合材料的電導(dǎo)率。
[Abstract]:In this paper, lead titanate (PbTiO _ 3) ceramic particles with negative dilatability are selected as reinforcements of composites, and copper with high thermal conductivity is chosen as matrix of composites.Copper matrix composites reinforced by lead titanate particles with different volume fraction were prepared by spark plasma sintering (SPS).The morphology, interfacial characteristics and dislocation twins of the reinforcements and the matrix in the composites were observed by means of phase and microstructure analysis.The thermal expansion properties and thermal conductivity of the composites were tested and analyzed by means of thermal expansion instrument and thermal conductivity test equipment.The compressive yield strength of the composite was measured by the electronic universal tester and the conductivity of the composite was measured by the intelligent resistance tester.The results of phase and microstructure analysis show that the PbTi O3/Cu composites prepared by SPS have clear and smooth interface morphology, and there is no obvious interface reaction.The observed results of weak interface between reinforcements and matrix show that there are a large number of dislocations and twinning in the sintered composites, which indicates that there are a lot of thermal mismatch stresses in the composites.The thermal expansion coefficient of the composites is negatively correlated with the volume fraction of PT particles, that is, the larger the volume fraction of PT particles, the lower the thermal expansion coefficient of the composites.The interfacial bonding of the composites is weak and the internal residual stress is complex, which leads to the instability of the thermal expansion coefficient of the composites, but the stability of the thermal expansion coefficient can be improved by proper heat treatment.Zr doping can reduce the Curie temperature of PZT / Cu composites and produce narrow and strong negative expansion lines at lower temperatures.The volume fraction and distribution of the reinforcements have a significant effect on the thermal conductivity of the composites.When the volume fraction of reinforcements is high, on the one hand, the low thermal conductivity of the reinforcements leads to the decrease of the thermal conductivity of the composites; on the other hand, when the volume fraction of the reinforcements is high, more interfaces are produced in the composites, which hinder the thermal conduction.Thus, the thermal conductivity of the composites is further reduced.The compressive yield strength of the composites is sensitive to the interface state between the reinforcements and the matrix and the distribution uniformity of the reinforcements.The conductivity of the composites is negatively correlated with the volume fraction of the reinforcements, and thermal cycling can improve the conductivity of the composites.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB333
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃強(qiáng),金燕萍,顧明元;電子封裝用金屬基復(fù)合材料的制備[J];材料導(dǎo)報(bào);2002年09期
2 陳國(guó)欽;朱德智;武高輝;張強(qiáng);修子揚(yáng);;電子封裝用SiC_p/Cu復(fù)合材料制備與性能[J];電子與封裝;2006年05期
3 張久興,劉科高,周美玲;放電等離子燒結(jié)技術(shù)的發(fā)展和應(yīng)用[J];粉末冶金技術(shù);2002年03期
4 譚強(qiáng)強(qiáng),張中太,方克明;復(fù)合氧化物負(fù)熱膨脹材料研究進(jìn)展[J];功能材料;2003年04期
5 張震;曹林洪;魏賢華;余洪滔;徐光亮;;xPb(Mg_(1/3)Nb_(2/3))O_3 (1 x)Pb(Zr_(0.48)Ti_(0.52))O_3壓電陶瓷的準(zhǔn)同型相界與介電性能[J];硅酸鹽學(xué)報(bào);2010年03期
6 蔡方碩;黃榮進(jìn);李來(lái)風(fēng);;負(fù)熱膨脹材料研究進(jìn)展[J];科技導(dǎo)報(bào);2008年12期
7 李志杰,王吉德,劉瑞泉,謝亞紅;鈰、釔雙摻雜鈣鈦礦型復(fù)合氧化物的合成及其在常壓合成氨中的應(yīng)用[J];中國(guó)稀土學(xué)報(bào);2005年01期
8 ;Effect of powder mixing process on the microstructure and thermal conductivity of Al/diamond composites fabricated by spark plasma sintering[J];Rare Metals;2010年01期
9 方針正;林晨光;張小勇;陸艷杰;劉鑫;;金剛石/Cu復(fù)合材料的燒結(jié)致密化研究[J];稀有金屬;2008年03期
10 ;Novel thermal expansion of lead titanate[J];Rare Metals;2003年04期
相關(guān)碩士學(xué)位論文 前1條
1 李錫武;電子封裝用銅基復(fù)合材料的研究[D];中南大學(xué);2006年
,本文編號(hào):1767522
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1767522.html