以DNA為模板的納米粒子的自組裝以及表面增強(qiáng)拉曼的研究
發(fā)布時(shí)間:2018-04-08 22:21
本文選題:DNA 切入點(diǎn):納米粒子 出處:《北京化工大學(xué)》2015年碩士論文
【摘要】:DNA是至關(guān)重要的遺傳物質(zhì),它的反相平行雙螺旋結(jié)構(gòu)模型的發(fā)現(xiàn)開啟了分子生物學(xué)領(lǐng)域的新的一頁(yè)。然而,除去其作為遺傳物質(zhì)的角色,DNA憑借其特殊的化學(xué),生物特性使其在納米材料科學(xué)以及藥物靶向治療方面也有很大的潛力。隨著幾十年DNA研究的進(jìn)一步發(fā)展,DNA納米技術(shù)作為新興的納米技術(shù)被用來(lái)構(gòu)造二維甚至是三維的納米結(jié)構(gòu),為人類展現(xiàn)了一個(gè)豐富多彩的,無(wú)與倫比的納米世界。在納米尺度的組裝上,構(gòu)筑基元的結(jié)合位點(diǎn)的選擇很重要,根據(jù)實(shí)驗(yàn)思路,設(shè)計(jì)較近或者較遠(yuǎn)距離對(duì)得到的組裝體的光學(xué)性能有很大的影響。因而,在DNA組裝的研究中,如何精確地控制組裝結(jié)合位點(diǎn),得到可調(diào)控的光電信號(hào)是一個(gè)難題。DNA折紙術(shù)(DNA Origami)的出現(xiàn),提供了解決這個(gè)挑戰(zhàn)的有效方法。DNA Origami是一種獨(dú)特的組裝方法,根據(jù)預(yù)先設(shè)計(jì)的結(jié)構(gòu),將長(zhǎng)鏈與眾多短鏈混合到一起,短鏈就如圖訂書釘鏈將長(zhǎng)鏈折成想要的結(jié)構(gòu)。這種新穎的方法,具有可預(yù)先設(shè)計(jì)位點(diǎn),生物相容性好,可組裝物質(zhì)多樣等優(yōu)勢(shì)。因此,DNA Origami以其精確可設(shè)計(jì)調(diào)控位點(diǎn),化學(xué)計(jì)量準(zhǔn)確,產(chǎn)物結(jié)構(gòu)易純化等優(yōu)勢(shì)成為了研究的新熱點(diǎn)。貴金屬納米粒子與DNA Origami組裝可預(yù)先精確設(shè)計(jì)調(diào)控位點(diǎn),從而更好地調(diào)控光學(xué)信號(hào)的強(qiáng)弱,貴金屬納米粒子與折紙結(jié)構(gòu)組裝后,會(huì)引發(fā)更強(qiáng)的表面等離子共振現(xiàn)象,也就是表面增強(qiáng)拉曼(SERS)。一直以來(lái),DNA引導(dǎo)的自組裝涉及的組裝尺寸都較小,多是納米尺寸,在介觀,乃至宏觀領(lǐng)域的研究較少。但是,DNA精確的堿基配對(duì)原則是很多超分子物質(zhì)所不具備的,因此將DNA引導(dǎo)的自組裝擴(kuò)展到介觀領(lǐng)域迫在眉睫。本論文第二、三章利用DNA的獨(dú)特的堿基互補(bǔ)配對(duì),將納米粒子定點(diǎn)組裝到DNA折紙結(jié)構(gòu)上,實(shí)現(xiàn)了納米粒子在指定位置精確組裝。通過(guò)引入特征拉曼分子得到結(jié)構(gòu)信號(hào)可控的表面增強(qiáng)拉曼結(jié)構(gòu)。拉曼信號(hào)提高102倍并且在金納米粒子組裝體的基礎(chǔ)上更換銀納米粒子,使表面增強(qiáng)拉曼信號(hào)進(jìn)一步提高103倍,可應(yīng)用于結(jié)構(gòu)檢測(cè),分析等領(lǐng)域。論文第四章創(chuàng)新地利用DNA引導(dǎo)玻璃纖維與石英片基底組裝,并在磁場(chǎng)操控條件下得到較復(fù)雜圖案,成功將DNA引導(dǎo)的組裝延伸到介觀領(lǐng)域,為進(jìn)一步將DNA引導(dǎo)的組裝應(yīng)用到更大尺寸奠定了良好的基礎(chǔ)。本論文主要分為三個(gè)部分:1.系統(tǒng)介紹了DNA Origami的經(jīng)典模型以及在納米醫(yī)藥生物領(lǐng)域的研究與應(yīng)用;2.將貴金屬納米粒子(金,銀)組裝DNA Origami上,通過(guò)調(diào)控位點(diǎn),得到三維組裝體,引入拉曼特征分子,得到表面增強(qiáng)拉曼結(jié)構(gòu);3.在玻璃纖維表面組裝磁性納米粒子(MNPs)多層膜,之后再將基底與玻璃纖維同時(shí)修飾互補(bǔ)DNA序列,通過(guò)磁鐵引導(dǎo)玻璃纖維運(yùn)動(dòng),使其固定在基底表面,并得到較為復(fù)雜的組裝圖案。
[Abstract]:DNA is the most important genetic material, and the discovery of its inverse parallel double helix structure model opens a new page in the field of molecular biology.However, the removal of its role as genetic material makes DNA have great potential in nanomaterials science and drug targeting therapy because of its special chemical and biological properties.With the further development of DNA research in recent decades, as a new nanotechnology, DNA nanotechnology has been used to construct two-dimensional or even three-dimensional nanostructures, showing us a colorful and unparalleled nanometer world.In nanoscale assembly, the selection of binding sites for building units is very important. According to the experimental ideas, the optical properties of the assembled materials are greatly affected by the design of closer or longer distance.Therefore, in the research of DNA assembly, how to precisely control the assembly binding site and obtain the controllable photoelectric signal is a difficult problem.Origami is a unique assembly method. According to the pre-designed structure, the long strands are mixed with many short strands, and the short strands are like the long strands that are folded into the desired structures.This novel method has the advantages of predesigned sites, good biocompatibility and various assembly materials.Therefore, Origami has become a new research hotspot for its advantages of precise design of regulatory sites, accurate stoichiometry and easy purification of product structures.The assembly of noble metal nanoparticles with DNA Origami can accurately design the control sites in advance, so as to better control the intensity of optical signals. After the assembly of noble metal nanoparticles and origami structures, it will lead to a stronger surface plasmon resonance phenomenon.This is surface-enhanced Raman spectroscopy.DNA guided self-assembly has been involved in small size, mostly nanoscale size, and less research in mesoscopic and even macro fields.However, the principle of exact base pairing is not available in many supramolecular materials, so it is urgent to expand the self-assembly of DNA to mesoscopic field.In the second and third chapters, the unique base complementary pairing of DNA is used to assemble the nanoparticles onto the origami structure of DNA.Surface enhanced Raman structures with controllable structural signals are obtained by introducing characteristic Raman molecules.The Raman signal is increased 102 times and the silver nanoparticles are replaced on the basis of the gold nanoparticles assembly. The surface enhanced Raman signal can be further enhanced by 103 times. It can be used in structure detection, analysis and other fields.In chapter 4, DNA is used to guide glass fiber and quartz substrate assembly, and complex patterns are obtained under the condition of magnetic field control. The DNA guided assembly is successfully extended to mesoscopic field.It lays a good foundation for further application of DNA-guided assembly to larger size.This paper is divided into three parts: 1.The classical model of DNA Origami and its research and application in the field of nanometer medical biology are introduced systematically.The noble metal nanoparticles (gold, silver) were assembled on DNA Origami. Three-dimensional assembly was obtained by controlling the sites, and Raman characteristic molecules were introduced to obtain surface-enhanced Raman structure.The magnetic nanoparticles (MNPs) multilayer film was assembled on the surface of glass fiber, and then the substrate and glass fiber were modified with complementary DNA sequence simultaneously. The motion of glass fiber was guided by magnets and fixed on the substrate surface, and a more complex assembly pattern was obtained.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 ;Analogic China map constructed by DNA[J];Chinese Science Bulletin;2006年24期
,本文編號(hào):1723612
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1723612.html
最近更新
教材專著