反應(yīng)共濺射Ni-TiN納米復(fù)合膜的制備與性能
發(fā)布時(shí)間:2018-04-01 12:33
本文選題:磁控濺射 切入點(diǎn):Ni-TiN 出處:《沈陽(yáng)大學(xué)》2015年碩士論文
【摘要】:在過(guò)去的幾十年里,Ti N薄膜以其高硬度、高耐磨性以及金黃的色澤被廣泛應(yīng)用于機(jī)械、航天、電子等領(lǐng)域。然而,較低的韌性限制了Ti N薄膜潛在的應(yīng)用。因此,需要研究綜合力學(xué)性能優(yōu)良的材料來(lái)滿足發(fā)展的需求。納米復(fù)合膜具有優(yōu)異的綜合使用性能,因此相關(guān)研究成為材料科學(xué)研究熱點(diǎn)之一。本文利用磁控共濺射技術(shù),通過(guò)改變薄膜制備工藝過(guò)程中的N2流量、Ni靶濺射功率、基體溫度和負(fù)偏壓四個(gè)工藝參數(shù)制備了一系列的Ni-Ti N納米復(fù)合膜,利用XRD、掃描電鏡、原子力顯微鏡、納米壓痕儀、電化學(xué)工作站和多功能表面性能測(cè)試儀對(duì)所制備薄膜的相結(jié)構(gòu)、表面形貌、耐腐蝕性能和力學(xué)性能等進(jìn)行了系統(tǒng)表征研究,獲得如下結(jié)論。研究了N2流量對(duì)Ni-Ti N納米復(fù)合膜的影響,結(jié)果表明:隨著N2流量的增加,Ti N的平均晶粒尺寸逐漸減小,薄膜的平均沉積速率也在減小,膜表面粗糙度則先減小后增大。在N2流量為16 m L/min時(shí),表面粗糙度最小,為2.75 nm,此時(shí),膜基結(jié)合力也達(dá)到最大,為28 N。通過(guò)Ni靶功率對(duì)Ni-Ti N納米復(fù)合膜的影響研究,發(fā)現(xiàn):在Ni靶功率較低時(shí),薄膜的平均晶粒尺寸較大,擇優(yōu)取向?yàn)門i N(111)晶面,隨著Ni靶功率的增加,擇優(yōu)取向變?yōu)門i N(200)晶面,平均晶粒尺寸逐漸減小,表明Ni的加入明顯地起到了細(xì)化晶粒的作用。在Ni靶功率為35 W時(shí),薄膜表面最平滑,粗糙度值最小為3.14 nm,此時(shí)膜基結(jié)合力和耐腐蝕性最好。當(dāng)Ni靶功率從25 W增至45 W時(shí),硬度、彈性模量分別從15.1 GPa和288 GPa增至21.1 GPa和290.5GPa,此時(shí)H3/E2的值也最大。但是當(dāng)Ni靶功率增加至55 W,薄膜的硬度和彈性模量又分別減小到18.2 GPa和281.4 GPa;w溫度對(duì)Ni-Ti N納米復(fù)合膜的影響有:當(dāng)溫度從100°C上升至400°C時(shí),薄膜的擇優(yōu)取向由Ti N(111)轉(zhuǎn)變?yōu)?200)晶面,平均晶粒尺寸先減小后增大,薄膜的膜基結(jié)合力和耐蝕性先升高后降低。在200°C時(shí)平均晶粒尺寸最小,為12.5nm,薄膜表面平整致密,表面粗糙度最小。在300°C時(shí)薄膜的膜基結(jié)合力和耐蝕性最好。基體負(fù)偏壓對(duì)Ni-Ti N納米復(fù)合膜的影響與基體溫度的影響大致相同。隨著負(fù)偏壓的增加,薄膜的擇優(yōu)取向由Ti N(111)晶面變?yōu)?200)晶面,薄膜平均晶粒尺寸先減小后增大,而力學(xué)性能和耐蝕性則先增加再下降。在負(fù)偏壓為-80 V時(shí)平均晶粒尺寸為最小,為13.6 nm,薄膜的硬度和彈性模量分別達(dá)到最大值的19.2 GPa和311 GPa,膜基結(jié)合力達(dá)到最大值的41 N,耐腐蝕性最好。在負(fù)偏壓為-120 V時(shí),表面粗糙度最小,為3.14 nm。通過(guò)Ni-Ti N納米復(fù)合膜與304不銹鋼基體的耐腐蝕性對(duì)比試驗(yàn)發(fā)現(xiàn),Ni-Ti N納米復(fù)合膜的耐腐蝕性明顯好于304不銹鋼基體。
[Abstract]:Tin thin films have been widely used in mechanical, aerospace, electronic and other fields for their high hardness, high wear resistance and golden color in the past few decades. However, the low toughness limits the potential applications of tin thin films. It is necessary to study the materials with excellent comprehensive mechanical properties to meet the needs of development. The nanocomposite films have excellent comprehensive performance, so the related research has become one of the research hotspots in material science. In this paper, the magnetron co-sputtering technology is used. A series of Ni-Ti N nanocomposite films were prepared by changing the N 2 flow rate Ni target sputtering power, substrate temperature and negative bias voltage. The phase structure, surface morphology, corrosion resistance and mechanical properties of the films were systematically studied by electrochemical workstation and multifunctional surface performance tester. The results show that the average grain size of Ni-Ti N decreases with the increase of N 2 flow rate, and the average deposition rate decreases with the increase of N 2 flow rate. The surface roughness of the film decreases first and then increases. When N 2 flow rate is 16 m L/min, the surface roughness is the smallest, which is 2.75 nm. At this time, the adhesion of the film is the highest, which is 28 N. the effect of Ni target power on the Ni-Ti N nanocomposite film is studied. It is found that when the power of Ni target is low, the average grain size of the thin film is larger, and the preferred orientation is Ti (N) 111). With the increase of the power of Ni target, the preferred orientation becomes the Ti (N) ~ (200)) plane, and the average grain size decreases gradually. The results show that the addition of Ni plays an obvious role in grain refinement. When the power of Ni target is 35 W, the surface of the film is smoother, the roughness is minimum 3.14 nm, and the adhesion and corrosion resistance of the film is the best. When the power of Ni target is increased from 25 W to 45 W, the surface of the film is smoother and the roughness is the minimum of 3.14 nm. Hardness, The modulus of elasticity increased from 15.1 GPa and 288 GPa to 21.1 GPa and 290.5 GPA, respectively, and the value of H3/E2 was the highest. However, when the target power of Ni was increased to 55 W, the hardness and modulus of elasticity of the film decreased to 18.2 GPa and 281.4 GPa.The substrate temperature was applied to Ni-Ti N nanocomplex. The effect of the film is as follows: when the temperature rises from 100 擄C to 400 擄C, The preferred orientation of the thin films was changed from Ti _ (N _ (111)) to ~ (200)). The average grain size first decreased and then increased, and the film substrate adhesion and corrosion resistance first increased and then decreased. At 200 擄C, the average grain size was the smallest (12.5 nm), and the film surface was flat and compact. The surface roughness is the smallest. The film has the best adhesion and corrosion resistance at 300 擄C. the effect of negative bias voltage on the Ni-Ti N nanocomposite film is approximately the same as that of the substrate temperature. The preferred orientation of the thin film changes from the Ti (N + 111) crystal plane to the crystal plane (200). The average grain size of the film decreases first and then increases, while the mechanical properties and corrosion resistance increase first and then decrease. The average grain size is the smallest when the negative bias voltage is -80 V. The hardness and elastic modulus of the film reached 19.2 GPa and 311GParespectively of the maximum value, and the maximum adhesion of the film was 41N, and the corrosion resistance was the best. When the negative bias voltage was -120V, the surface roughness was the smallest. The results show that the corrosion resistance of Ni-Ti N nanocomposite film is better than that of 304 stainless steel substrate.
【學(xué)位授予單位】:沈陽(yáng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 呂長(zhǎng)東;黃美東;劉野;許世鵬;薛利;;氮?dú)饬髁繉?duì)磁控濺射TiN膜層色澤的影響[J];電鍍與精飾;2013年03期
2 馮愛新,張永康,謝華琨,范真;劃痕試驗(yàn)法表征薄膜涂層界面結(jié)合強(qiáng)度[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
3 成靖文;范洪遠(yuǎn);田穎萍;;氮?dú)饬髁繉?duì)反應(yīng)磁控濺射TiN薄膜微結(jié)構(gòu)與力學(xué)性能的影響[J];硬質(zhì)合金;2012年04期
,本文編號(hào):1695628
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1695628.html
最近更新
教材專著