鹵化鉛銫鈣鈦礦納米晶的合成及其性質(zhì)研究
發(fā)布時間:2018-04-01 04:45
本文選題:納米材料 切入點:無機鈣鈦礦 出處:《吉林大學》2017年碩士論文
【摘要】:隨著現(xiàn)代社會的發(fā)展,人們對于能源的需求越來越大。相對于傳統(tǒng)的石油和煤等不可再生能源,尋找和發(fā)展可持續(xù)清潔能源是目前的重中之重,太陽能是最為理想的目標之一。目前的光電轉(zhuǎn)化器件存在原材料昂貴,制備工藝復雜等問題,所以人們迫切的想要尋找一種廉價可塑性強的光電材料來推進光電轉(zhuǎn)換領(lǐng)域的發(fā)展。自從2012年有人用CsSnI3和CH3NH3PbI3制備了高效率的太陽能電池之后,鈣鈦礦這種經(jīng)典材料再一次進入了人們的視野,受到了全世界科研工作者的大力研究。鈣鈦礦材料由于其晶體表面缺陷較少,載流子遷移速率快,壽命長,激子的結(jié)合能和可擴散距離大,熒光量子效率高,原料廉價易得等特點,使得人們將其廣泛應(yīng)用于太陽能電池、LED、激光等領(lǐng)域。純無機鈣鈦礦納米材料既有傳統(tǒng)半導體量子點材料的性質(zhì),也有鈣鈦礦材料優(yōu)異的光電性質(zhì),非常值得我們深入研究,為將來的實際應(yīng)用打下基礎(chǔ)。在本論文中,我們提出了一種非熱注入可控合成無機鹵化鉛銫鈣鈦礦的方法,將不同的反應(yīng)前體溶解后一起混合加入一個容器中,直接升溫加熱就可以得到無機鈣鈦礦納米粒子。我們只需要通過調(diào)節(jié)不同的溫度(50-170℃)和前體的種類以及比例,就可以得到不同尺寸(1 nm-10.4 nm)以及組分的鹵化鉛銫鈣鈦礦納米粒子,實現(xiàn)鈣鈦礦納米粒子發(fā)光范圍從360 nm到700 nm的全覆蓋。用這種方法合成的無機鈣鈦礦納米粒子的吸收發(fā)射光譜強且尖銳對稱,粒子尺寸均勻,形貌規(guī)則,熒光量子效率可達87%,實驗重復性高,適合工業(yè)大規(guī)模生產(chǎn),為將來鈣鈦礦納米材料的大規(guī)模實際應(yīng)用打下基礎(chǔ)。我們進行了Mn離子摻雜無機鈣鈦礦的功能化研究。實驗通過成核摻雜的方式合成了Mn:CsPbCl_3粒子,然后通過離子交換的方法合成Mn:CsPbBr3和Mn:CsPbI3粒子。在一定的條件下獲得了Mn離子摻雜發(fā)光和鈣鈦礦本征發(fā)光的雙光體系。實驗過程中隨著Mn離子摻雜濃度的不斷提高,Mn離子摻雜發(fā)光位置不變,強度不斷增加。我們對其雙光體系進行調(diào)控,鈣鈦礦本征發(fā)光可以從410 nm調(diào)節(jié)到480 nm,而Mn離子摻雜發(fā)光的位置保持在585 nm不變,在此基礎(chǔ)上研究了Mn:CsPbCl_3粒子熒光光譜隨溫度的變化,為Mn離子摻雜無機鈣鈦礦用作溫度傳感器打下基礎(chǔ)。
[Abstract]:With the development of modern society, people need more and more energy. Compared with traditional non-renewable energy such as oil and coal, it is the most important to find and develop sustainable clean energy. Solar energy is one of the most ideal targets. So there's an urgent need to find a cheap, plastic, optoelectronic material to boost photovoltaic conversion. Since 2012, when CsSnI3 and CH3NH3PbI3 were used to make efficient solar cells, Perovskite, a classical material, has once again entered the field of vision and has been studied by researchers all over the world. Perovskite materials are characterized by fewer crystal surface defects, faster carrier migration and longer lifetime. The excitons are characterized by large binding energy and diffusible distance, high fluorescence quantum efficiency and cheap raw materials. The pure inorganic perovskite nanomaterials have not only the properties of traditional semiconductor quantum dot materials, but also the excellent optoelectronic properties of perovskite materials. In this paper, a non-thermal injection controlled synthesis method of inorganic lead, cesium halide perovskite is proposed, in which different reaction precursors are dissolved and mixed into a container. We can get inorganic perovskite nanoparticles by heating them directly. We just need to adjust the temperature at 50-170 鈩,
本文編號:1694040
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1694040.html
最近更新
教材專著