石墨烯增強鋁基復(fù)合材料組織及性能研究
本文選題:旋轉(zhuǎn)摩擦擠壓技術(shù) 切入點:石墨烯 出處:《南昌航空大學(xué)》2017年碩士論文
【摘要】:本文分別以1060工業(yè)純鋁和7075鋁合金為基材,多層氧化石墨烯(Graphene Oxide)為增強相,采用旋轉(zhuǎn)摩擦擠壓(Rotational Friction Extrusion,RFE)技術(shù)制備了石墨烯含量分別為0.25wt%、0.6wt%和1wt%的石墨烯增強鋁基復(fù)合材料。在確定了制備的最佳工藝參數(shù)的基礎(chǔ)上,研究了石墨烯含量對復(fù)合材料成形和組織的影響規(guī)律,并通過對復(fù)合材料進行XRD、SEM和EMPA試驗分析了其物相組成及石墨烯分布的均勻性,同時測定了復(fù)合材料的顯微硬度、抗拉強度、延伸率和電導(dǎo)率,對拉伸斷口進行了SEM觀察,最后對石墨烯增強鋁基復(fù)合材料的強化機制進行了探討。所得主要結(jié)論如下:采用旋轉(zhuǎn)摩擦擠壓技術(shù)可制備出外觀成形良好的石墨烯增強鋁基復(fù)合材料。當(dāng)旋轉(zhuǎn)速度為555rpm,擠壓速度為0.36mm/s時,制備的石墨烯增強1060Al復(fù)合材料棒料宏觀形貌良好,長度可達約140mm;當(dāng)旋轉(zhuǎn)速度為315rpm,擠壓速度為0.28mm/s時,制備的石墨烯增強7075Al復(fù)合材料棒料的長度達到約150mm且宏觀形貌較好。石墨烯的含量對復(fù)合材料的成形有很大影響,并具有細化晶粒的作用且分布較為均勻。當(dāng)石墨烯含量為0.25wt%時,復(fù)合材料成形較好無明顯缺陷,但隨著石墨烯含量的增加,復(fù)合材料表面有嚴重缺陷并出現(xiàn)開裂。通過顯微觀察和XRD、SEM和EMPA試驗,發(fā)現(xiàn)復(fù)合材料的組織為均勻細小的等軸晶,石墨烯在復(fù)合材料中分布較為均勻,且未與Al基體發(fā)生化學(xué)反應(yīng),未生成Al4C3等脆性界面產(chǎn)物。復(fù)合材料的力學(xué)和導(dǎo)電性能在石墨烯加入后顯著提高。隨著石墨烯含量的增加,復(fù)合材料的顯微硬度、抗拉強度和電導(dǎo)率均隨之提高。1wt%1060Al復(fù)合材料的硬度為43.3HV,較純鋁提高了72.5%;1wt%7075Al復(fù)合材料的硬度為132.3HV,是經(jīng)過RFE加工的7075Al基材的1.26倍。0.6wt%1060Al復(fù)合材料的抗拉強度達到113.4MPa,是純鋁的1.37倍,斷口呈宏觀脆性斷裂;0.6wt%7075Al復(fù)合材料的抗拉強度為474.4MPa,比經(jīng)過RFE加工的7075Al基材提高了22.3%,斷口呈微觀韌性斷裂。0.25wt%1060Al復(fù)合材料的電導(dǎo)率比純鋁提高了3.6%,其IACS值約為80%,0.25wt%7075Al復(fù)合材料的電導(dǎo)率IACS值為40.3%,較經(jīng)過RFE加工的7075Al基材提高了5.2%。
[Abstract]:In this paper, 1060 industrial pure aluminum and 7075 aluminum alloy were used as substrates and graphene oxide was used as reinforcing phase. Graphene reinforced aluminum matrix composites with 0.25wt% graphene content and 1wt% graphene content were prepared by rotating friction extrusion Friction extension technique. The effect of graphene content on the forming and microstructure of composites was studied. The phase composition and the homogeneity of graphene distribution were analyzed by XRD-SEM and EMPA tests. The microhardness of the composites was also measured. Tensile strength, elongation and conductivity were observed by SEM. Finally, the strengthening mechanism of graphene reinforced aluminum matrix composites is discussed. The main conclusions are as follows: the graphene reinforced aluminum matrix composites with good appearance can be prepared by rotating friction extrusion. When the speed is 555rpm, the extrusion speed is 0.36mm/s, The graphene reinforced 1060Al composites have good macroscopic morphology and the length is about 140 mm. When the rotation speed is 315rpm and the extrusion speed is 0.28mm/s, The length of graphene reinforced 7075Al composites is about 150mm and the morphology is good. The content of graphene has a great influence on the forming of the composites. When the content of graphene is 0.25 wt%, the composite has no obvious defects, but with the increase of graphene content, The microstructure of the composite was found to be uniform and small equiaxed crystal, and the graphene was distributed uniformly in the composite by microscopical observation and XRDX SEM and EMPA tests, which showed that there were serious defects and cracks on the surface of the composite. There was no chemical reaction with Al matrix and no brittle interface products such as Al4C3. The mechanical and conductive properties of the composites increased significantly after the addition of graphene, and the microhardness of the composites increased with the increase of graphene content. The tensile strength and electrical conductivity of the composites increased with the increase of 43.3HVV, and the hardness of the composites was 132.3HV. the hardness of the composites was 132.3HV. the tensile strength of the composites was 1.26 times of that of the 7075Al substrates processed by RFE, and the tensile strength of the composites was 113.4MPa. it was 1.37 times that of the pure aluminum, and the tensile strength of the composites was 1.26 times of that of the 7075Al substrates processed by RFE and 1.37 times that of the pure aluminum. The tensile strength of the composite with macroscopic brittle fracture of 0.6wtp75Al is 474.4MPa, which is 22.3mm higher than that of the 7075Al substrate fabricated by RFE. The electrical conductivity of the 60Al composite with micro-toughness fracture of 0.25wt / 60Al is 3.6cm higher than that of pure aluminum, and its IACS value is about 800.25wtp75Al. The conductivity IACS value of 7075Al is 40.3, which is 5.2% higher than that of 7075Al substrate processed by RFE.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB333
【參考文獻】
相關(guān)期刊論文 前10條
1 劉奮成;熊其平;錢濤;劉強;邢麗;柯黎明;;旋轉(zhuǎn)摩擦擠壓加工CNTs/Al復(fù)合材料的線材組織和性能[J];中國有色金屬學(xué)報;2017年01期
2 高鑫;岳紅彥;郭二軍;林軒宇;姚龍輝;王寶;;石墨烯增強銅基復(fù)合材料的制備及性能[J];材料熱處理學(xué)報;2016年11期
3 洪起虎;燕紹九;楊程;張曉艷;戴圣龍;;氧化石墨烯/銅基復(fù)合材料的微觀結(jié)構(gòu)及力學(xué)性能[J];材料工程;2016年09期
4 胡增榮;童國權(quán);張超;陳長軍;張敏;郭華鋒;徐家樂;;石墨烯-鎳納米復(fù)合材料的制備及性能[J];材料熱處理學(xué)報;2016年01期
5 李多生;吳文政;QIN Qing-hua;周賢良;左敦穩(wěn);魯世強;郜友彬;;石墨烯/Al復(fù)合材料的微觀結(jié)構(gòu)及力學(xué)性能[J];中國有色金屬學(xué)報;2015年06期
6 齊天嬌;俞澤民;許志鵬;段雪峰;楊笛;李旺;;石墨烯增強鋁基復(fù)合材料制備及力學(xué)性能研究[J];哈爾濱理工大學(xué)學(xué)報;2015年03期
7 凌自成;閆翠霞;史慶南;馮中學(xué);;石墨烯增強金屬基復(fù)合材料的制備方法研究進展[J];材料導(dǎo)報;2015年07期
8 燕紹九;楊程;洪起虎;陳軍洲;劉大博;戴圣龍;;石墨烯增強鋁基納米復(fù)合材料的研究[J];材料工程;2014年04期
9 劉德強;黃春平;劉強;柯黎明;邢麗;;旋轉(zhuǎn)摩擦擠壓法制備CNTs/Al線材初探[J];熱加工工藝;2014年02期
10 李建林;陳彬彬;章文;王連軍;江莞;;陶瓷/石墨烯塊體復(fù)合材料的研究進展[J];無機材料學(xué)報;2014年03期
相關(guān)碩士學(xué)位論文 前10條
1 廖小軍;石墨烯/鋁復(fù)合材料制備及導(dǎo)熱性能研究[D];南昌航空大學(xué);2016年
2 樊浩;基于旋轉(zhuǎn)摩擦擠壓法制備的CNTs/Al復(fù)合材料磨損機理研究[D];南昌航空大學(xué);2016年
3 朱杜橋;旋轉(zhuǎn)摩擦擠壓制備CNTs/Al復(fù)合材料的強化行為研究[D];南昌航空大學(xué);2016年
4 凌自成;石墨烯/銅基復(fù)合材料制備及其力電性能研究[D];昆明理工大學(xué);2016年
5 鄒君玉;石墨烯/純鋁復(fù)合材料的制備及其性能研究[D];哈爾濱工業(yè)大學(xué);2015年
6 李娟;石墨烯/鎳復(fù)合材料的制備和性能研究[D];太原理工大學(xué);2015年
7 蘇佳楠;放電等離子燒結(jié)石墨烯增韌氧化鋯陶瓷基復(fù)合材料力學(xué)性能研究[D];蘇州大學(xué);2015年
8 強金麗;二元顆粒增強鋁基復(fù)合材料的制備技術(shù)[D];南昌航空大學(xué);2015年
9 高鑫;石墨烯增強鋁基復(fù)合材料的制備及力學(xué)性能研究[D];哈爾濱理工大學(xué);2015年
10 徐付彪;自蔓延合成法制備石墨烯及其鎳基復(fù)合材料性能研究[D];哈爾濱工業(yè)大學(xué);2014年
,本文編號:1664801
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1664801.html